![]() |
Revisiting the Power Explanation
Cecil Moore wrote:
Gene Fuller wrote: OK, we are getting somewhere. According to the equation, we know that interference has the same units as irradiance. Interesting. Does that mean that interference doesn't work for fields? Are there multiple definitions for interference? My IEEE Dictionary is 130 miles away so I cannot look up the technical definition for interference. The units of irradiance are watts per unit area. In a transmission line, we can consider the unit area to be constant and simply drop the units of area. The resultant "irradiance" equation for transmission line power is: Ptotal = P1 + P2 + 2*SQRT(P1*P2)cos(A) 2*SQRT(P1*P2)cos(A) is the interference term in watts where A is the angle between the two interfering fields. This is all explained at: http://www.w5dxp.com/energy.htm If the above equation is followed, adding powers is easier than superposing voltages and then calculating power. Cecil, This is a perfect example of how the messages get so confused around here. You cannot simply ignore dimensionality, units, vector vs. scalar, etc. That leads to really silly conclusions like expressing interference in the same units as irradiance. I don't know if dimensional analysis is still taught these days, but way back when I was taking science classes it was often stated that the very first thing to do when attempting to solve any problem was to make sure that all of the dimensions and units matched up. The numbers mean nothing if the equations are wrong. I suspect a few others in this newsgroup had similar training. 73, Gene W4SZ |
Revisiting the Power Explanation
Gene Fuller wrote:
This is a perfect example of how the messages get so confused around here. You cannot simply ignore dimensionality, units, vector vs. scalar, etc. That leads to really silly conclusions like expressing interference in the same units as irradiance. Just remember when you are standing at the Pearly Gates outside looking in, it was you and not me who called Eugene Hecht's conclusions "really silly". :-) -- 73, Cecil http://www.w5dxp.com |
Revisiting the Power Explanation
Richard Clark wrote:
Cecil no doubt hesitates to trod this path that leads to the destruction of his other favorite, failed example of anti-glare glass. I found out later that it wasn't anti-glare glass. It was anti-reflective glass. Out of ignorance, I just chose the wrong word. However, everything I said was true about anti-reflective glass. A 1/4WL thin film acts virtually the same way a 1/4WL series matching section acts and reflections are eliminated through wave cancellation. Incidentally, your attempt at superposing powers was why your reflections turned out to be brighter than the surface of the sun. If you had instead used the irradiance equation, your result and mine would have been identical - reflections eliminated. -- 73, Cecil http://www.w5dxp.com |
Revisiting the Power Explanation
Richard Clark wrote:
Cecil Moore wrote: reflections eliminated. As I said, you lack of experience in the field of Optics is glaring. I have some anti-reflective glass, Richard. It does a reasonable job of wave cancellation even under less than ideal conditions with ambient light. Our previous example involved an ideal laser and an ideal 1/4WL coating of thin film. The index of refraction of the thin film material was exactly the square root of the index of refraction of the glass. Those are ideal conditions for 100% wave cancellation of reflections as anyone in the field of optics should know. -- 73, Cecil http://www.w5dxp.com |
Revisiting the Power Explanation
On Sat, 31 Mar 2007 11:11:13 GMT, "Dave" wrote:
and hence my recommendation to abandon power as a useful method of analyzing waves in transmission lines. power is a scalar, you can't add power without resorting to digging out the phase angles that come from the current or voltage waves. Hi Dave, This is not a very compelling reason for method that has a wide application in optics; Cecil has no real experience in this field, and it shows frequently, but the math is quite common. It relates, peripherally, to Keith's advice to investigate lattice diagrams, but Cecil no doubt hesitates to trod this path that leads to the destruction of his other favorite, failed example of anti-glare glass. 73's Richard Clark, KB7QHC |
Revisiting the Power Explanation
On Sat, 31 Mar 2007 12:21:00 -0500, Cecil Moore
wrote: reflections eliminated. As I said, you lack of experience in the field of Optics is glaring. |
Revisiting the Power Explanation
Richard Clark wrote:
Cecil Moore wrote: Your own model showed the falsity of this supposed 100% cancellation. Actually, it showed perfectly the 100% cancellation by two waves each of equal magnitude and opposite phase. It was your superposition of powers that was at fault and you apparently don't even realize your mistake. Do you want to go through it again? Have you tried the brain teaser I posted? It is a lot like non-reflective thin films. -- 73, Cecil http://www.w5dxp.com |
Revisiting the Power Explanation
On Fri, 30 Mar 2007 11:46:15 -0800, Richard Clark wrote:
On Fri, 30 Mar 2007 18:19:20 GMT, Walter Maxwell wrote: Oh, 'cmon Richard, are you saying that if a load reflected wave Is not the same statement as your earlier one: On Fri, 30 Mar 2007 14:45:56 GMT, Walter Maxwell wrote: The part I feel is contradicted is that when total re-reflection is caused without a total discontinuity such as a physical short or open circuit What is in your "without a total discontinuity" that is now found in your "load reflected wave?" Are we to now parse "total discontinuity" as being wholly different from "partial discontinuity" such that waves suddenly mix from that difference? My example of the classic AT/ATR tube evidences EVERY observation you offer, except it is a necessary load without which those observations would never appear. If I were to replace its "total discontinuity" with a weak tube (it exhibits less than total short); it too would exhibit EVERY observation you offer EXCEPT they would be imperfect or "partial discontinuities" repeated every quarter wave. It is obvious that the effect follows the physical load, not the waves (they haven't changed when the tube went bad). The physical load is the principle in the process of interference. Richard, I don't consider the AT/ATR tube relevant to the discussion of re-reflection of reflected power incident on the output of a pi-network in an RF TX. There is absolutely no example of interference that does not rely on a load to reveal it. If what you just said is true, then how do you explain nulls in a radiation pattern of an antenna having more than one radiator, for example two verticals spaced 1/4 wl and fed in quadrature, thus creating a cardioid pattern with a total null in one direction in azimuth? If the null was not created by interference between the radiations from the two verticals, then how do you explain the formation of the null? 73's Richard Clark, KB7QHC Walt, W2DU |
Revisiting the Power Explanation
On Sat, 31 Mar 2007 17:40:45 GMT, Cecil Moore
wrote: Those are ideal conditions for 100% wave cancellation of reflections as anyone in the field of optics should know. Amusing. You don't really know anyone of them, do you? Certainly none who have to live with the invalidity of this sophomoric treatment. Your own model showed the falsity of this supposed 100% cancellation. As I said, your visiting the topic of Lattice diagrams is not even on the horizon, and behind it, Fresnel's equations are even more remote. (I can well imagine you flipping through the index to find those pages to presume their understanding, your Xeroxing other's work is apparent.) Like I said, your are quite ignorant to the matters of Optics. RF runs a poor second, as your professional life in binary design has corrupted your thinking. |
Revisiting the Power Explanation
Richard Clark wrote:
On Sat, 31 Mar 2007 18:57:02 GMT, Cecil Moore wrote: Do you want to go through it again? Do I need to see you crawl again? Here it is again. Reflections are eliminated at the air to thin-film surface. In the following fixed font diagram, IR is the Index of Refraction. air | 1/4WL thin-film | Glass 1W Laser---IR=1.0---|----IR=1.222-----|--IR=1.493---... Ifor=1W | Ifor=1.0101W | Ifor=1W Iref=0W | Iref=0.0101W | Iref=0 Note that I is "irradiance", not current. Given: The irradiance reflection coefficient is 0.01 at both interfaces. The irradiance transmission coefficient is 0.99 at both interfaces. Have you tried the brain teaser I posted? It is a lot like non-reflective thin films. proves my point adequately (your fumbling with patch-work proofs like bracing the SQRT with absolutes is funny only once however). Well, Hecht apparently didn't have to deal with nit-pickers as exist on this newsgroup. If such had any importance at all, I'm sure he would have mentioned it. -- 73, Cecil http://www.w5dxp.com |
All times are GMT +1. The time now is 04:52 PM. |
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
RadioBanter.com