RadioBanter

RadioBanter (https://www.radiobanter.com/)
-   Antenna (https://www.radiobanter.com/antenna/)
-   -   AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency (https://www.radiobanter.com/antenna/121252-am-electromagnetic-waves-20-khz-modulation-frequency-astronomically-low-carrier-frequency.html)

Radium[_2_] June 30th 07 03:41 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency
 
Hi:

Please don't be annoyed/offended by my question as I decreased the
modulation frequency to where it would actually be realistic.

I have a very weird question about electromagnetic radiation,
carriers, and modulators.

Is it mathematically-possible to carry a modulator signal [in this
case, a pure-sine-wave-tone] with a frequency of 20 KHz and an
amplitude of 1-watt-per-meter-squared on a AM carrier signal whose
frequency is 10^-(1,000,000,000-to-the-power-10^1,000,000,000)
nanocycle* every 10^1,000,000,000-to-the-power-10^1,000,000,000 giga-
eons and whose amplitude is a minimum of 10^1,000,000,000-to-the-
power-10^1,000,000,000 gigaphotons per 10^-(1,000,000,000-to-the-
power-10^1,000,000,000) nanosecond?

If it is not mathematically-possible, then please explain why.

10^-(1,000,000,000-to-the-power-10^1,000,000,000) second is an
extremely short amount of time. 10^-(1,000,000,000-to-the-
power-10^1,000,000,000) nanosecond is even shorter because a
nanosecond is shorter than a second.

Giga-eon = a billion eons

Eon = a billion years

*nanocycle = billionth of a cycle

Gigaphoton = a billion photons

10^1,000,000,000-to-the-power-10^1,000,000,000 -- now that is one
large large number.

10^1,000,000,000 = 10-to-the-power-1,000,000,000

So you get:

(10-to-the-power-1,000,000,000) to the power (10-to-the-
power-1,000,000,000)

10^-(1,000,000,000-to-the-power-10^1,000,000,000) = 10^-(10-to-the-
power-1,000,000,000)-to-the-power-(10-to-the-power-1,000,000,000)

10^-(10-to-the-power-1,000,000,000) to the power (10-to-the-
power-1,000,000,000) is an extremely small number at it equals 10-to-
the-power-NEGATIVE-[(10-to-the-power-1,000,000,000) to the power (10-
to-the-power-1,000,000,000)]

No offense but please respond with reasonable answers & keep out the
jokes, off-topic nonsense, taunts, insults, and trivializations. I am
really interested in this.


Thanks,

Radium


John Smith I June 30th 07 04:08 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-lowcarrier frequency
 
Radium wrote:

...
Is it mathematically-possible to carry a modulator signal [in this
case, a pure-sine-wave-tone] with a frequency of 20 KHz and an
amplitude of 1-watt-per-meter-squared on a AM carrier signal whose


The 20 Khz is obviously NOT an audio tone, but exists as VLF, what you
are terming "modulation" is actually a mixing of carriers then ... and
the problem with your question ONLY BEGINS there!

JS

Radium[_2_] June 30th 07 05:03 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency
 
On Jun 29, 8:08 pm, John Smith I wrote:

The 20 Khz is obviously NOT an audio tone,


Yes it is. 20 KHz is the highest audible frequency. Humans hear from
20 to 20,000 Hz. No offense but WTF are you thinking??

but exists as VLF, what you
are terming "modulation" is actually a mixing of carriers then ... and
the problem with your question ONLY BEGINS there!


A carrier wave is modulated by the modulator wave. On most AM
stations, the modulator wave consists of the voice of someone
speaking.

Most AM stations have carrier frequencies in the medium wave band - in
the range of 520,000 to 1,160,000 cycles every 1 second.

In the case I am describing, the modulator wave is a 20 KHz pure sine-
wave tone on a carrier frequency of 10^-(1,000,000,000-to-the-
power-10^1,000,000,000) nanocycle every 10^1,000,000,000-to-the-
power-10^1,000,000,000 giga-eons. Is this scenario mathematically-
possible? If not, then why??


John Smith I June 30th 07 05:15 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-lowcarrier frequency
 
Radium wrote:

WTF are you thinking when you describe the 20 Khz signal as, "a
pure-sine-wave-tone] with a frequency of 20 KHz and an
amplitude of 1-watt-per-meter-squared"

One square meter of copper wire squared, a squared meter of modulation
xfrmr ... ?

Your question sounds like one of a high school physics student
attempting to ask a seemingly logical--yet complex question, and of no
real world value.

Your ability at obfuscation is only mundane ...

If what you say is true, you have an interest, what is the purpose of
your question?

JS




Don Bowey June 30th 07 05:24 AM

AM electromagnetic waves: 20 KHz modulation frequency on anastronomically-low carrier frequency
 
On 6/29/07 9:03 PM, in article
, "Radium"
wrote:

On Jun 29, 8:08 pm, John Smith I wrote:

The 20 Khz is obviously NOT an audio tone,


Yes it is. 20 KHz is the highest audible frequency. Humans hear from
20 to 20,000 Hz. No offense but WTF are you thinking??

but exists as VLF, what you
are terming "modulation" is actually a mixing of carriers then ... and
the problem with your question ONLY BEGINS there!


A carrier wave is modulated by the modulator wave. On most AM
stations, the modulator wave consists of the voice of someone
speaking.

Most AM stations have carrier frequencies in the medium wave band - in
the range of 520,000 to 1,160,000 cycles every 1 second.

In the case I am describing, the modulator wave is a 20 KHz pure sine-
wave tone on a carrier frequency of 10^-(1,000,000,000-to-the-
power-10^1,000,000,000) nanocycle every 10^1,000,000,000-to-the-
power-10^1,000,000,000 giga-eons. Is this scenario mathematically-
possible? If not, then why??


No, it's not possible. No planetary system will exist for that span of
time.

Now will you go away?



Radium[_2_] June 30th 07 05:30 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency
 
On Jun 29, 9:15 pm, John Smith I wrote:

Radium wrote:

WTF are you thinking when you describe the 20 Khz signal as, "a
pure-sine-wave-tone] with a frequency of 20 KHz and an
amplitude of 1-watt-per-meter-squared"

One square meter of copper wire squared, a squared meter of modulation
xfrmr ... ?


Sorry that should be 1 X [10^-6] Watts-per-m^2

http://www.glenbrook.k12.il.us/GBSSC...nd/u11l2b.html

1 X [10^-6] Watts-per-m^2 is about the loudness of a "normal
conversation" according to the above link.

F-------------------king typos!!!!!!!!!!


Your question sounds like one of a high school physics student
attempting to ask a seemingly logical--yet complex question, and of no
real world value.

Your ability at obfuscation is only mundane ...

If what you say is true, you have an interest, what is the purpose of
your question?


My basic question is if I have an AM receiver which receives signals
on a carrier frequency of Fc, is it mathematically-possible for me to
receive a modulator signal -- on that station -- of a frequency higher
than Fc? If not, then why? If not, then how are the submarines which
use ELFs [Extremely Low carrier Frequencies around 3 to 30 Hz] able to
perform voice communications?

I just stretched the question out to astronomical extremes. I have a
habit of doing that.


[email protected] June 30th 07 05:35 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency
 
In rec.radio.amateur.antenna Radium wrote:
Hi:


Please don't be annoyed/offended by my question as I decreased the
modulation frequency to where it would actually be realistic.


I have a very weird question about electromagnetic radiation,
carriers, and modulators.


Is it mathematically-possible to carry a modulator signal [in this
case, a pure-sine-wave-tone] with a frequency of 20 KHz and an
amplitude of 1-watt-per-meter-squared on a AM carrier signal whose


The fact that you specified the modulation in W/M^2 immediately
says you don't know WTF you are talking about and the question
is meaningless.

You can AM modulate any frequency 0 Fc infinity with any other
frequency 0 Fm infinity.

Whether it's physically possible or results in massive distortion
is a separate issue.

snip inane crap

--
Jim Pennino

Remove .spam.sux to reply.

Don Bowey June 30th 07 05:52 AM

AM electromagnetic waves: 20 KHz modulation frequency on anastronomically-low carrier frequency
 
On 6/29/07 9:30 PM, in article
, "Radium"
wrote:

On Jun 29, 9:15 pm, John Smith I wrote:

Radium wrote:

WTF are you thinking when you describe the 20 Khz signal as, "a
pure-sine-wave-tone] with a frequency of 20 KHz and an
amplitude of 1-watt-per-meter-squared"

One square meter of copper wire squared, a squared meter of modulation
xfrmr ... ?


Sorry that should be 1 X [10^-6] Watts-per-m^2

http://www.glenbrook.k12.il.us/GBSSC...nd/u11l2b.html

1 X [10^-6] Watts-per-m^2 is about the loudness of a "normal
conversation" according to the above link.

F-------------------king typos!!!!!!!!!!


Your question sounds like one of a high school physics student
attempting to ask a seemingly logical--yet complex question, and of no
real world value.

Your ability at obfuscation is only mundane ...

If what you say is true, you have an interest, what is the purpose of
your question?


My basic question is if I have an AM receiver which receives signals
on a carrier frequency of Fc, is it mathematically-possible for me to
receive a modulator signal -- on that station -- of a frequency higher
than Fc? If not, then why?


What is the design bandwidth of the "fixed frequency" receiver?

When you say "modulator signal" do you mean a sideband of the transmitted
signal, or do you mean at least one sideband and the Carrier, or do you mean
the Carrier and both of it's sidebands?

It would be good if you would attempt to understand AM modulation, and
generally some of the factors of receiver design.

If not, then how are the submarines which
use ELFs [Extremely Low carrier Frequencies around 3 to 30 Hz] able to
perform voice communications?


Why do you believe they use voice communications on the ELF system?


I just stretched the question out to astronomical extremes. I have a
habit of doing that.


You have a habit of appearing to be an idiot each time you do it.




Bob Myers June 30th 07 06:10 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency
 

"Radium" wrote in message
ps.com...
My basic question is if I have an AM receiver which receives signals
on a carrier frequency of Fc, is it mathematically-possible for me to
receive a modulator signal -- on that station -- of a frequency higher
than Fc? If not, then why? If not, then how are the submarines which
use ELFs [Extremely Low carrier Frequencies around 3 to 30 Hz] able to
perform voice communications?

I just stretched the question out to astronomical extremes. I have a
habit of doing that.


Why not simply ask the question you mean to ask, then, rather
than the absurd numbers you put in the original version of this
(and which you then expect everyone to work through, just to
see what the hell you might be talking about)?

The answer to the question you seem to be asking is obvious
if you simply work through the mathematics of what is going on
in amplitude modulation. So why not simply do that, and not
ask such incredibly obtuse questions?

One hint: the ELF submarine communications to which you refer
are NOT carrying voice communications, but very low-rate
CW ("Morse code," if you want to think of it that way) signalling.

Bob M.



RHF June 30th 07 07:44 AM

AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency
 
On Jun 29, 10:10 pm, "Bob Myers" wrote:
"Radium" wrote in message

ps.com...

My basic question is if I have an AM receiver which receives signals
on a carrier frequency of Fc, is it mathematically-possible for me to
receive a modulator signal -- on that station -- of a frequency higher
than Fc? If not, then why? If not, then how are the submarines which
use ELFs [Extremely Low carrier Frequencies around 3 to 30 Hz] able to
perform voice communications?


I just stretched the question out to astronomical extremes. I have a
habit of doing that.


Why not simply ask the question you mean to ask, then, rather
than the absurd numbers you put in the original version of this
(and which you then expect everyone to work through, just to
see what the hell you might be talking about)?

The answer to the question you seem to be asking is obvious
if you simply work through the mathematics of what is going on
in amplitude modulation. So why not simply do that, and not
ask such incredibly obtuse questions?

One hint: the ELF submarine communications to which you refer
are NOT carrying voice communications, but very low-rate
CW ("Morse code," if you want to think of it that way) signalling.

Bob M.




All times are GMT +1. The time now is 04:57 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
RadioBanter.com