Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On Jan 1, 6:00*pm, Roger wrote:
Roy Lewallen wrote: Roger wrote: Could you better describe how you determine that the source has a Z0 equal to the line Z0? *I can guess that you use a Thévenin equivalent circuit and set the series resistor to Z0. Probably the simplest way is to put the entire source circuitry into a black box. Measure the terminal voltage with the box terminals open circuited, and the current with the terminals short circuited. The ratio of these is the source impedance. If you replace the box with a Thevenin or Norton equivalent, this will be the value of the equivalent circuit's impedance component (a resistor for most of our examples). If the driving circuitry consists of a perfect voltage source in series with a resistance, the source Z will be the resistance; if it consists of a perfect current source in parallel with a resistance, the source Z will be the resistance. You can readily see that the open circuit V divided by the short circuit I of these two simple circuits equals the value of the resistance. The power output of the Thévenin equivalent circuit follows the load. Sorry, I don't understand this. Can you express it as an equation? There seems to be some confusion as to the terms "Thévenin equivalent * circuit", "ideal voltage source", and how impedance follows these sources. Two sources we all have access to are these links: Voltage source: *http://en.wikipedia.org/wiki/Voltage_source Thévenin equivalent circuit:http://en.wikipedia.org/wiki/Th%C3%A9venin%27s_theorem I don't disagree with anything I read there. But you may not quite have the concept of impedance correct. The impedance of the Thevenin/Norton equivalent source is not V/I but rather the slope of the line representing the relationship of the voltage to the current. When there is a source present, this line does not pass through the origin. Only for passive components does this line pass through the origin in which case it becomes V/I. Because the voltage to current plot for an ideal voltage source is horizontal, the slope is 0 and hence so is the impedance. For an ideal current source the slope is vertical and the impedance is infinite. Hoping this helps clarify.... ...Keith |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Standing Wave Phase | Antenna | |||
Standing wave on feeders | Antenna | |||
Dipole with standing wave - what happens to reflected wave? | Antenna | |||
Newbie ?: I've Built A Simple 1/4 Wave Dipole for 2 Mtrs. Could IMake a1/2 Wave? | Homebrew | |||
What is a traveling-wave antenna? | Antenna |