Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On Apr 4, 11:41*am, Roger Sparks wrote:
On Fri, 4 Apr 2008 06:30:08 -0700 (PDT) Keith Dysart wrote: On Apr 4, 1:29*am, Roger Sparks wrote: [snip] Another way to figure the power to the source would be by using the voltage and current through the source. * This is how I did it. Taking Esource.50[90..91] = 0.03046 J as an example ... Psource.50[90] = V * I * * * * * * * *= 0.000000 * 0.000000 * * * * * * * *= 0 W Psource.50[91] = -2.468143 * -0.024681 * * * * * * * *= 0.060917 W Using the trapezoid rule for numerical integration, Esource.50[90..91] = ((Psource.50[90]+Psource.50[91])/2) * interval * * * * * * * * * *= ((0+0.060917)/2)*1 * * * * * * * * * *= 0.030459 J The other powers and energies in the spreadsheet are computed similarly. There was an error in the computation of the 'delta's; the sign was wrong. The spreadsheet available athttp://keith.dysart.googlepages.com/radio6 has now been corrected. (And, for Cecil, this spreadsheet no longer has macros so it may be downloadable.) To use this spreadsheet to compute my numbers above, set the formulae for Vr.g and Ir.g in the rows for degrees 90 and 91 to zero. Using current and voltage, the power at time 91 degrees of the reflected wave is 1.234v*1.43868a= 1.775w. *Over one second integrated, the energy should be 1.775 J. I could not match to the above data to any rows, so I can't comment. But perhaps the explanation above will correct the discrepancy. I took a look at your revised spreadsheet entitled "Reflected45degrees-1.xls". Using the numbers from row 94 (91 degrees), the voltage developed at the source would be Vs = -2.468143v. *The current folowing through the source would be found from Ig which is 1.389317a in todays version of the spreadsheet (it was 1.439a previously). *The power flowing INTO the source is 2..468143* 1.389317 = 3.429032w. *This is the power Ps found in Column 11. * This returning power is all from the reflected wave. * I would not say this. The power *is* from the line, but this is Pg, and it satisfies the equation Ps(t) = Prs(t) + Pg(t) The imputed power in the reflected wave is Pr.g(t) and is equal to -99.969541 W, at 91 degrees. This can not be accounted for in any combination of Ps(91) (-3.429023 W) and Prs(91) (96.510050 W). And recall that expressing Cecil's claim using instantaneous powers requires that the imputed reflected power be accounted for in the source resistor, and not the source. This is column 26 and would require that Prs(91) equal 100 W (which it does not). The source is acting like a resistor with an impedance of 2.468143/1.389317 = 1.776 ohms. * This is not a good way to describe the source. The ratio of the voltage to the current is 1.776 but this is not a resistor since if circuit conditions were to change, the voltage would stay the same while the current could take on any value; this being the definition of a voltage source. Since the voltage does not change when the current does, deltaV/deltaI is always 0 so the voltage source is more properly described as having an impedance of 0. As a result, the returning reflection does not truely see 50 ohms but sees 50 + 1.776 = 51.776 ohms. * The returning reflection is affectively a change in the circuit conditions. Using the source impedance of 0 plus the 50 ohm resistor means the reflection sees 50 ohms, so there is no reflection. Using your approach of computing a resistance from the instantaneous voltage and current yeilds a constantly changing resistance. The reflection would alter this computed resistance. This change in resistance would then alter the reflection which would change the resistance. Would the answer converge? The only approach that works is to use the conventional approach of considering that a voltage source has an impedance of 0. Of course the result is a another reflection. *Is this the idea you were trying to communicate Cecil? To me, this is destructive interference at work, so all the power in the reflected wave does not simply disappear into the resistor Rs on the instant basis. * I agree with latter, but not for the reason expressed. Rather, because the imputed power of the reflected wave is a dubious concept. This being because it is impossible to account for this power. clip When using superposition, one has to pick a reference voltage and current direction for each component and then add or subtract the contributing voltage or current depending on whether it is in the reference direction or against the reference direction. Mistakes and confusion with relation to the signs are not uncommon. Careful choice of reference directions will sometimes help, but mostly it simply leads to some other voltage or current that needs to be subtracted instead of added. ...Keith Yes. *I don't want to force my conventions onto you, so I am trying to understand yours while insisting that the answers from each convention must be the same. * I think we both agree that the reflections are carrying power now. Not I. Not until the imputed power can be accounted for. ...Keith |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Now for the rest of the story! | General | |||
Now for the rest of the story! | Policy | |||
Now for the rest of the story! | General | |||
Now for the rest of the story! | Policy | |||
WTD: Paul Harvey Rest of the Story broadcasts from Sep 1 thru 6 | Broadcasting |