Home |
Search |
Today's Posts |
#19
![]() |
|||
|
|||
![]()
On Fri, 28 Nov 2008 17:08:06 -0800 (PST), K7ITM wrote:
On Nov 27, 2:46*pm, Jeff Liebermann wrote: ... Good luck, but first a little math. *What manner of tolerance do you thing you need to cut your coax pieces? *Let's pretend you wanted to get the center frequency accurate to 1Mhz. *At 418MHz, one wavelength is: * *wavelength(mm) = 300,000 / freq(mhz) * VF * *wavelength = 3*10^5 / 418 * 0.83 = 596 mm That works out to: * *596 / 418 = 1.4 mm/MHz So, if you want the center frequency accurate to within +/- 1MHz, you gotta cut it to within +/- 1.4 mm. *Good luck. *Like I previously ranted, you'll need a cutting fixture. *A steady hand, good eye, quality coax, and plenty of patience are also helpful. But why would you care to try to get it within 1MHz? I don't. I wanted a number to show how accurate the cut would need to be if he wanted the minimum VSWR point to be accurate to within 1MHz. I picked 1MHz because the tolerance is easily scaled to other bandwidth and accuracy numbers. My main point was that a fixture of some sort was necessary to obtain that level of accuracy. With only four radiating elements, the beam 3dB width will be roughly 8 degrees if the bottom of the antenna is a wavelength above ground (30 degrees in freespace...). There's not much point in putting a lot of effort into get closer than perhaps 4 electrical degrees along the line, and I don't believe even that is necessary to get good performance. That's several mm, and should be easy with such short lengths. Well, at 418MHz, one wavelength (electrical) is about 600 mm. 4 degrees is: 600 mm * 4/360 = 6.7 mm Yeah, that's fairly loose and could be done with diagonal cutters and a tape measure. Normally, I would punch the numbers into an NEC model, but I couldn't figure out how to model a radiating coax cable section as an antenna element (using 4NEC2). I sorta faked it with wire segments, but got stumped on what to do with the dielectric and it's velocity factor. Here's one way to build a coax cable colinear (for 2.4GHz): http://www.nodomainname.co.uk/Omnicolinear/2-4collinear.htm Note the measurements in Fig 1 for where to measure the half wavelength sections. I'm suspicious. Of course, at 418MHz, it's less critical. Using foam- Teflon coax makes it easy to do: the insulation doesn't melt when you solder things together. I've only played with the RG6/u CATV flavor, where everything is crimped. I never have tried to solder the stuff. RG8/u with foam teflon dielectric: http://www.westpenn-cdt.com/pdfs/coaxial_spec_pdfs/50%20ohm%20cables/25810.pdf Looks nice. I cut the sections to matched lengths, use a little jig to trim the layers to the same lengths on each, and then put a wrapping of 30AWG or so silver plated wire (wire-wrap wire) around each joint to hold it while soldering. That makes it easy to adjust before soldering, and solid after. See photos of the jig at bottom of: http://www.nodomainname.co.uk/Omnicolinear/2-4collinear.htm Incidentally, since the top 1/4 wave element represents something close to perhaps 50 ohms, it would be interesting to measure the amount of RF that isn't radiated and actually gets to the top section of the antenna. *If my analysis of the antenna is correct, the first section (near the coax connector) radiates 1/2 the power. *The next section 1/4th. *After that 1/8th, etc. *By the time it gets to the top of the antenna, there won't be much left. *However, that's theory, which often fails to resemble reality. *It would interesting if you stuck a coax connector on the top, and measured what comes out. There's very little loss in a half wave of decent coax at 450MHz. That means that the voltage across the lowest junction between sections is echoed up the antenna at each other junction. In freespace, by symmetry, the currents will be very nearly the same going down from the top as going up from the bottom. My model over typical ground (bottom a wavelength above the ground) shows current symmetry within a percent or so, assuming equal voltages driving each of the three junctions. If you wish, you can use the parameters of the line you're actually using to figure the differences among the feedpoint voltages, based on the loads at each junction. When I've done that in the past, the differences are practically negligible. You can iterate, feeding those voltages back into the model to find new load impedances, etc., repeating till you're happy that the models have converged. Recent versions of EZNEC even let you put the transmission line into the model, along with its loss. I hate to admit that I made a mistake, but as you and Roy Lewallen point out, my explanation of how this antenna operates is almost certainly wrong. I'll do a fast measurement tomorrow to satisfy my curiousity, but from your explanation and Roy's, I've erred big time. With a constant current distribution along the length of the antenna, and a constant voltage at the various feed points, it's a fair conclusion that the power radiatated around each of these feed points are equal. I goofed(tm). The supporting tube certainly will affect the feedpoint impedance, but in my experience, it does not materially affect the pattern. I deal with the impedance through a matching network; it's no trouble to adjust for a low enough reflection that I don't worry about it. Decoupling is the more interesting problem, to me. Cheers, Tom Gone sulking... -- Jeff Liebermann 150 Felker St #D http://www.LearnByDestroying.com Santa Cruz CA 95060 http://802.11junk.com Skype: JeffLiebermann AE6KS 831-336-2558 |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
conceptual questions about antennas | Antenna | |||
conceptual questions about antennas | Shortwave | |||
Questions about antennas for 2.4 Ghz | Antenna | |||
Diameter of cable in coaxial Collinear antenna | Antenna | |||
Several questions about mobile HF antennas | Antenna |