Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
Szczepan Bialek wrote:
I am simple asking if radio people have trouble with the fact that the speed of waves are frequeny dependent. No, they are not because the speed of electromagnetic waves is NOT frequeny dependent, the speed is media dependent, you babbling, ignorant, trolling, moron. -- Jim Pennino Remove .spam.sux to reply. |
#2
![]() |
|||
|
|||
![]()
On Mar 24, 10:42*am, "Szczepan Bialek" wrote:
*"Wimpie" napisal w ... On 24 mar, 10:53, "Szczepan Bialek" wrote: "This finding had practical applications for telegraph communications. For example, Heaviside actually solved one of the biggest problems affecting long distance telegraph and telephone communication in 1887 -distortion. |
#3
![]() |
|||
|
|||
![]()
In message , Szczepan Bialek
writes "This finding had practical applications for telegraph communications. For example, Heaviside actually solved one of the biggest problems affecting long distance telegraph and telephone communication in 1887 -distortion. It was known that different frequencies travel with different speeds on a long cable. For example, the low bass frequencies in a voice signal travel faster than the high treble frequencies. When the cable is long enough, the frequencies smear, and both voice and telegraph signals become garbled noise. Heaviside used his equations to show that if inductances (i.e., a small coil of wire) were added along the length of the cable, the distortion could be reduced." From: http://www.ieeeghn.org/wiki/index.php/Oliver_Heaviside " It was known that different frequencies travel with different speeds on a long cable". Is the same in air and space? Yes in air , and no in space. B -- Brian Howie |
#4
![]() |
|||
|
|||
![]() "Brian Howie" napisal w wiadomosci ... In message , Szczepan Bialek writes "This finding had practical applications for telegraph communications. For example, Heaviside actually solved one of the biggest problems affecting long distance telegraph and telephone communication in 1887 -distortion. It was known that different frequencies travel with different speeds on a long cable. For example, the low bass frequencies in a voice signal travel faster than the high treble frequencies. When the cable is long enough, the frequencies smear, and both voice and telegraph signals become garbled noise. Heaviside used his equations to show that if inductances (i.e., a small coil of wire) were added along the length of the cable, the distortion could be reduced." From: http://www.ieeeghn.org/wiki/index.php/Oliver_Heaviside " It was known that different frequencies travel with different speeds on a long cable". Is the same in air and space? Yes in air , and no in space. Yes close to the Earth. But what is close to the Sun? S* |
#5
![]() |
|||
|
|||
![]()
Brian Howie wrote:
" It was known that different frequencies travel with different speeds on a long cable". Is the same in air and space? Yes in air , and no in space. B Depends what you mean by "space".. perfect vacuum, sure.. But what's between the planets in the Solar System isn't a perfect vacuum, and so, it shows dispersion due to the presence of small amounts of ionization. Granted, it's generally a better vacuum than you are likely to achieve on Earth by mechanical means. |
#6
![]() |
|||
|
|||
![]() "Jim Lux" napisal w wiadomosci ... Brian Howie wrote: " It was known that different frequencies travel with different speeds on a long cable". Is the same in air and space? Yes in air , and no in space. B Depends what you mean by "space".. perfect vacuum, sure.. But what's between the planets in the Solar System isn't a perfect vacuum, and so, it shows dispersion due to the presence of small amounts of ionization. Granted, it's generally a better vacuum than you are likely to achieve on Earth by mechanical means. Speed of waves in a dispersive medium is temperature dependent. In the Solar System the temperatures are decreasing with the distance from the Sun. You have send us: http://ipnpr.jpl.nasa.gov/progress_report/42-65/65I.PDF It seems to me that the no answer for Maxwell's question: "Incidentally, Maxwell once suggested that Roemer's method could be used to test for the isotropy of light speed, i.e., to test whether the speed of light is the same in all directions. Roemer's method can be regarded as a means of measuring the speed of light in the direction from Jupiter to the Earth. Jupiter has an orbital period of about 12 years, so if we use Roemer's method to evaluate the speed of light several times over a 12 year period, we will be evaluating the speed in all possible directions (in the plane of the ecliptic). " Do you know the answer? S* |
#7
![]() |
|||
|
|||
![]()
Szczepan Bialek wrote:
"Jim Lux" napisal w wiadomosci ... Brian Howie wrote: " It was known that different frequencies travel with different speeds on a long cable". Is the same in air and space? Yes in air , and no in space. B Depends what you mean by "space".. perfect vacuum, sure.. But what's between the planets in the Solar System isn't a perfect vacuum, and so, it shows dispersion due to the presence of small amounts of ionization. Granted, it's generally a better vacuum than you are likely to achieve on Earth by mechanical means. Speed of waves in a dispersive medium is temperature dependent. Maybe.. depends on the medium, I should think, and the mechanism of the dispersion. Some dispersion might be due to ionization (which may or may not be temperature dependent). In the Solar System the temperatures are decreasing with the distance from the Sun. Temperature in a vacuum and with ionized particles is tricky to define. It has to do with mean free path and the velocity of the particles. When the number density gets down in the "few atoms per cubic meter" and the mean free path gets to be meters or km, I think you need to start thinking in different ways. One common confusion is an assumption of a particular velocity distribution in charged particles and then using the 11000K = 1 eV relation. |
#8
![]() |
|||
|
|||
![]() "Jim Lux" napisal w wiadomosci ... Szczepan Bialek wrote: Speed of waves in a dispersive medium is temperature dependent. Maybe.. depends on the medium, I should think, and the mechanism of the dispersion. Some dispersion might be due to ionization (which may or may not be temperature dependent). It is known that the speed of light in air is temperature dependent ( mirage and E. Schmidt's method in Fluid dynamics). in vacuum also. But I culd find the results. In the Solar System the temperatures are decreasing with the distance from the Sun. Temperature in a vacuum and with ionized particles is tricky to define. It has to do with mean free path and the velocity of the particles. When the number density gets down in the "few atoms per cubic meter" and the mean free path gets to be meters or km, I think you need to start thinking in different ways. May be, but at first I must know if the mirage works in vacuum. One common confusion is an assumption of a particular velocity distribution in charged particles and then using the 11000K = 1 eV relation. Yes. But the simple measurement of the mirage or E. Schmidt's effect in vacuum will clarify everything. "I am sure that such experiments were done". Could you help? S* |
Reply |
|
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Waves vs Particles | Antenna | |||
OT - Speed Test - ignore. - File 1 of 1 - Speed.rtf (01/31) | Radio Photos | |||
On the really Short Waves... | Shortwave | |||
Traveling Waves, Power Waves,..., Any Waves,... | Antenna |