Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Old January 5th 14, 02:23 AM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 702
Default Stacking Winegard HD-6065P antennas


"Jerry Stuckle" wrote in message
...

Jeff is correct. Your error is believing the combiner has 3.5db loss.

When splitting a signal, you do have about a 3.5db loss per output,
because the signal is halved plus a bit of additional loss. However, when
combining the signals, the signal is NOT halved, so you don't have the 3db
loss there. You only have about 0.5db loss (more or less, depending on
the quality of the combiner and other factors).

Let's take an example. Since a combiner is just a splitter turned around,
we'll start with the splitter end.

Let's feed 2mw to the input of the splitter. This means each output gets
1mw (3db loss) (we could use voltage also, but since power is E^2/R, it's
not so straightforward).

So now each leg has 1mw on it.

Now let's turn the splitter around and make it a combiner and feed two
signals, 1mw ea., same frequency, to the inputs to the combiner. Since
this is a totally passive device, the effects are reversible. If the
signals are 180 degrees out of phase, of course the output is 0. However,
if the two signals are in phase with each other, the putout is 2mw.

Note there is no 3db loss in the combiner. But of course this assumed a
"perfect" combiner, with no losses. In reality, the combiner will have a
bit of loss (typically 0.5db as noted above), so the output from the
splitter will be slightly less than 1mw and the output from the combiner
will be slightly less than 2mw.

Does this help clarify things?

And yes, phasing harnesses work the same way. The can be either splitters
or combiners, depending on how they are used. The advantage is they have
less loss; the disadvantage, as noted, is they have a much narrower
effective bandwidth.


What I am having trouble with is the 'perfect' combiner.
The one by Wineguard specs 3.5 db loss and the MiniCircuits I have specs at
3 db plus slightly more depending on frequency. I had forgotten that I
built one years ago out of the ARRL Handbook. They give it a spec of 6 db
of loss per port. The one I built has that not counting minor errors and
loss. Just checked it out.

My problem is where are you going to find a combiner for a broad frequency
that does not have any large (say over 1 db ) of loss ? Are the ones for
the TV frequencies built differant ?

For the splitters, I see the 3 db because the signal is going to two places
(3 db equals half power as we all know). But then the problem I am having
is the extra 3 db that is lossed in the combiner instead of just half of a
db or so.

Has anyone actually put one on accurate test equipment to see about the loss
like I have been trying to do ?

I understand phasing harnesses for antennas. They are almost loseless. Only
a few feet of coax worth. I have used them on antennas before. They are
not usually very broad banded unless the antennas are broad banded and made
so the impedance is not the nominal 50 ohms. That is for comercial 4 or 8
dipole arays for VHF/UHF. Lots of 'tricks' used to do that.




---
This email is free from viruses and malware because avast! Antivirus protection is active.
http://www.avast.com

  #2   Report Post  
Old January 5th 14, 02:38 AM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: Oct 2012
Posts: 1,067
Default Stacking Winegard HD-6065P antennas

On 1/4/2014 9:23 PM, Ralph Mowery wrote:

"Jerry Stuckle" wrote in message
...

Jeff is correct. Your error is believing the combiner has 3.5db loss.

When splitting a signal, you do have about a 3.5db loss per output,
because the signal is halved plus a bit of additional loss. However, when
combining the signals, the signal is NOT halved, so you don't have the 3db
loss there. You only have about 0.5db loss (more or less, depending on
the quality of the combiner and other factors).

Let's take an example. Since a combiner is just a splitter turned around,
we'll start with the splitter end.

Let's feed 2mw to the input of the splitter. This means each output gets
1mw (3db loss) (we could use voltage also, but since power is E^2/R, it's
not so straightforward).

So now each leg has 1mw on it.

Now let's turn the splitter around and make it a combiner and feed two
signals, 1mw ea., same frequency, to the inputs to the combiner. Since
this is a totally passive device, the effects are reversible. If the
signals are 180 degrees out of phase, of course the output is 0. However,
if the two signals are in phase with each other, the putout is 2mw.

Note there is no 3db loss in the combiner. But of course this assumed a
"perfect" combiner, with no losses. In reality, the combiner will have a
bit of loss (typically 0.5db as noted above), so the output from the
splitter will be slightly less than 1mw and the output from the combiner
will be slightly less than 2mw.

Does this help clarify things?

And yes, phasing harnesses work the same way. The can be either splitters
or combiners, depending on how they are used. The advantage is they have
less loss; the disadvantage, as noted, is they have a much narrower
effective bandwidth.


What I am having trouble with is the 'perfect' combiner.
The one by Wineguard specs 3.5 db loss and the MiniCircuits I have specs at
3 db plus slightly more depending on frequency. I had forgotten that I
built one years ago out of the ARRL Handbook. They give it a spec of 6 db
of loss per port. The one I built has that not counting minor errors and
loss. Just checked it out.


A perfect combiner (like anything else "perfect") doesn't exist. But it
is a very common (and handy) way of specifying how things work. It's
used all over the place in EE degree programs, for instance.

So you start with the perfect item, then add losses, phase shifts, etc.
as they occur to get a "real" part.

My problem is where are you going to find a combiner for a broad frequency
that does not have any large (say over 1 db ) of loss ? Are the ones for
the TV frequencies built differant ?


There are good combiners and bad combiners. The commercial grade ones
we use typically have 1db loss from 50Mhz to 2Ghz. Note that these
are basically splitters which are reversed to form combiners, when
necessary.

For the splitters, I see the 3 db because the signal is going to two places
(3 db equals half power as we all know). But then the problem I am having
is the extra 3 db that is lossed in the combiner instead of just half of a
db or so.


In a good quality combiner, there is no extra 3db of loss.

Has anyone actually put one on accurate test equipment to see about the loss
like I have been trying to do ?


I haven't actually measured it myself, but I do use commercial grade
splitters/combiners (not as much any more because a lot of video has
gone digital). Typical loss as a combiner is around 0.5 - 0.7 db from
50Mhz to 2Ghz.

But you also won't find these at Radio Shack or Best Buy.

And there are testing labs out there who do test these things; if any of
the ratings were off, the manufacture would quickly lose credibility in
commercial circles.

I understand phasing harnesses for antennas. They are almost loseless. Only
a few feet of coax worth. I have used them on antennas before. They are
not usually very broad banded unless the antennas are broad banded and made
so the impedance is not the nominal 50 ohms. That is for comercial 4 or 8
dipole arays for VHF/UHF. Lots of 'tricks' used to do that.


Phasing harnesses are just another form of splitter/combiner. One way
they combine; turn them around and they split. That's why they work for
both transmitting and receiving.




---
This email is free from viruses and malware because avast! Antivirus protection is active.
http://www.avast.com


--
==================
Remove the "x" from my email address
Jerry, AI0K

==================
  #3   Report Post  
Old January 5th 14, 05:05 AM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 702
Default Stacking Winegard HD-6065P antennas


"Jerry Stuckle" wrote in message
...
A perfect combiner (like anything else "perfect") doesn't exist. But it
is a very common (and handy) way of specifying how things work. It's used
all over the place in EE degree programs, for instance.

So you start with the perfect item, then add losses, phase shifts, etc. as
they occur to get a "real" part.



I am awear of that 'perfect' vers 'real world'. Took a 2 year asociate
degree in electronics engineering about 40 years ago. Most things are
calculated close and then trimmed to take care of the usual 5 to 10 percent
differance in components.

That is why I was not worried about anything under a DB, but just the parts
close to 3 db.



---
This email is free from viruses and malware because avast! Antivirus protection is active.
http://www.avast.com

  #4   Report Post  
Old January 5th 14, 03:04 AM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: Jun 2007
Posts: 1,336
Default Stacking Winegard HD-6065P antennas

On Sat, 4 Jan 2014 21:23:14 -0500, "Ralph Mowery"
wrote:

What I am having trouble with is the 'perfect' combiner.


I feel your pain. Many years ago, I made a similar mistake on the NEC
antenna modeling mailing list. I then processed to make a total fool
of myself and had to be corrected by the experts. Even so, I still
didn't believe it so I built a Wilkinson combiner and bench tested it
for loss. I still have the combiner somewhere as a reminder of my
mistake.

Incidentally, a Wilkinson combiner might be a tolerable solution for
combining two FM antenna. The loss is much less than a bifilar wound
toroid. I'm not sure if it will work over the entire FM band. I can
grind the numbers if anyone is interested.

My problem is where are you going to find a combiner for a broad frequency
that does not have any large (say over 1 db ) of loss ? Are the ones for
the TV frequencies built differant ?


There's only so much you can do with passive only designs. The next
step up is an active combiner:
http://www.rldrake.com/product-ac1686.php
0-3dB gain per port. 54 to 860 MHz.

Has anyone actually put one on accurate test equipment to see about the loss
like I have been trying to do ?


Yep. I have. There's very little loss between the combiner input
ports and the "sum" port. However, in the other direction, there's a
bit over 3dB loss due to the power splitting. See the specs on the
MCL splitter/combiner that you have and try it with a service monitor
or generator. Since it works down to 10 MHz, you might be able to do
the test with a function generator, a few dummy loads, some T
connectors, and an oscilloscope.

I understand phasing harnesses for antennas. They are almost loseless. Only
a few feet of coax worth. I have used them on antennas before. They are
not usually very broad banded unless the antennas are broad banded and made
so the impedance is not the nominal 50 ohms. That is for comercial 4 or 8
dipole arays for VHF/UHF. Lots of 'tricks' used to do that.


It's low, but the phasing harness loss for stacked vertical dipoles is
not zero. I've never calculated or measured it, but this might help:
http://www.kg4jjh.com/pdf/2-Meter%20Vertical%20Dipole%20Array.pdf
"The phasing harness loss at 150 MHz is calculated to be 0.67 dB."
Scaled for 100 Mhz, I would guess about 0.5 dB. Might as well use a
combiner/splitter.

--
Jeff Liebermann
150 Felker St #D
http://www.LearnByDestroying.com
Santa Cruz CA 95060 http://802.11junk.com
Skype: JeffLiebermann AE6KS 831-336-2558
  #5   Report Post  
Old January 5th 14, 05:01 AM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 702
Default Stacking Winegard HD-6065P antennas


"Jeff Liebermann" wrote in message
...
On Sat, 4 Jan 2014 21:23:14 -0500, "Ralph Mowery"
wrote:

What I am having trouble with is the 'perfect' combiner.


I feel your pain. Many years ago, I made a similar mistake on the NEC
antenna modeling mailing list. I then processed to make a total fool
of myself and had to be corrected by the experts. Even so, I still
didn't believe it so I built a Wilkinson combiner and bench tested it
for loss. I still have the combiner somewhere as a reminder of my
mistake.

Incidentally, a Wilkinson combiner might be a tolerable solution for
combining two FM antenna. The loss is much less than a bifilar wound
toroid. I'm not sure if it will work over the entire FM band. I can
grind the numbers if anyone is interested.

My problem is where are you going to find a combiner for a broad
frequency
that does not have any large (say over 1 db ) of loss ? Are the ones for
the TV frequencies built differant ?


There's only so much you can do with passive only designs. The next
step up is an active combiner:
http://www.rldrake.com/product-ac1686.php
0-3dB gain per port. 54 to 860 MHz.

Has anyone actually put one on accurate test equipment to see about the
loss
like I have been trying to do ?


Yep. I have. There's very little loss between the combiner input
ports and the "sum" port. However, in the other direction, there's a
bit over 3dB loss due to the power splitting. See the specs on the
MCL splitter/combiner that you have and try it with a service monitor
or generator. Since it works down to 10 MHz, you might be able to do
the test with a function generator, a few dummy loads, some T
connectors, and an oscilloscope.

I understand phasing harnesses for antennas. They are almost loseless.
Only
a few feet of coax worth. I have used them on antennas before. They are
not usually very broad banded unless the antennas are broad banded and
made
so the impedance is not the nominal 50 ohms. That is for comercial 4 or 8
dipole arays for VHF/UHF. Lots of 'tricks' used to do that.


It's low, but the phasing harness loss for stacked vertical dipoles is
not zero. I've never calculated or measured it, but this might help:
http://www.kg4jjh.com/pdf/2-Meter%20Vertical%20Dipole%20Array.pdf
"The phasing harness loss at 150 MHz is calculated to be 0.67 dB."
Scaled for 100 Mhz, I would guess about 0.5 dB. Might as well use a
combiner/splitter.

--


I understand the idea of using 'perfect' items in electronics, then going
for more exect calculations if needed. As most electronic items are often a
5 to 10 percent variation anyway. Often you get a close calculation and
build it and trim for the desired results. I did take 2 year course in
electronics engineering about 40 years ago for an associates degree, so know
about perfect vers real components.

The Wilkinson combiner is possiable for relative narrow frequencies. Not
sure if building one out of descrete components or full size transmission
lines would be broad enough for the whole FM band either. Wild guess it
would be about the same if just two pieces of transmission line of the
correct impedance and length were used.

Isn't the Wilkinson combiner just two pieces of transmission line (or
simulated with components) with a resistor across two of the ports to
absorbe the diffeance if the loads/sources are not ballanced ? I know what
they are and have seen equipment with them in it,but never did much of a
study on it.


As the subject is combining, I have not looked into the losses of splitting,
but it would be 6 db for the simple resistor designs not counting the minor
losses. That would be 3 db for the ports and 3 db lost in the resistors.

To combind signals you would get the loss of the resistors of 3 db and a
fraction of other loss.

I am using a HP 8924C for a test set. It has just about everything you can
think of for a service monitor. Calibrated from 30 to 1000 MHz but usuable
uncalibrated to about a half of a mhz.
http://www.amtronix.com/hp8924c60.htm

As mentioned the only combiner I have is a MiniCircuits and they spec it at
3 db plus small losses depending on the frequency. That is what I am
measuring.

The diplexer/combiner will have very low loss. I have checked out 2 of them
in the past just to see and the losses were about half a db or so. However
that is for frequencies seperated by a very large percentage. Usually one
port is a low pass and the other is a high pass filter. Not suited for
signals on the same frequency as the origional poster wanted to do.

Yes, phasing harnesses on antennas are not totally loseless, but will be
mainly whatever the loss of the coax is between the elements.

If were the origional poster and there were not too many transmitters near
me, I would try a good preamp first. Mast mounted if possiable as it is for
receive only.









---
This email is free from viruses and malware because avast! Antivirus protection is active.
http://www.avast.com



  #6   Report Post  
Old January 8th 14, 02:34 AM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: Jun 2007
Posts: 1,336
Default Stacking Winegard HD-6065P antennas

On Sun, 5 Jan 2014 00:01:47 -0500, "Ralph Mowery"
wrote:

I understand the idea of using 'perfect' items in electronics, then going
for more exect calculations if needed.


I like to design perfect antennas and circuits as a sanity check to
see if it can be done. Then, I throw in the losses and see what
happens. It's also a crude form of sensitivity analysis, which tells
me which parameters are most important.

The Wilkinson combiner is possiable for relative narrow frequencies. Not
sure if building one out of descrete components or full size transmission
lines would be broad enough for the whole FM band either. Wild guess it
would be about the same if just two pieces of transmission line of the
correct impedance and length were used.


Good guess. Discrete or coaxial performance (loss, isolation, and
bandwidth) are about the same. You're also correct that it wouldn't
cover the entire FM band. I could do it with a single stage Wilkinson
combiner by lowering the Q of the components. However, that will
increase the losses, which is not a great idea.

Much better is to use a multi-stage Wilkinson combiner:
http://www.microwaves101.com/encyclopedia/wilkinson_multistage.cfm
It's a common stripline technique. You probably recognize the general
pattern:
http://www.eee.bham.ac.uk/yatesac/Web%20PDF%27s/Test%20Gear/Wideband%20Wilkinson%20Coupler_1-2%20GHz_Layout.pdf
http://www.eee.bham.ac.uk/yatesac/Web%20Pages/Wideband%20Wilkinson%20Splitter%20&%20Combiner.htm

Isn't the Wilkinson combiner just two pieces of transmission line (or
simulated with components) with a resistor across two of the ports to
absorbe the diffeance if the loads/sources are not ballanced ?


The resistor is NOT to provide a load in case of an imbalance. It's
to provide an impedance match for a 180 degree out of phase path
between input/output ports. A signal that tries to go between the two
input/output ports has two paths along which it can go. One is down
one 1/4 wave coax, and up the other 1/4 wave coax, resulting in a 180
degree phase shift. The other is through the resistor with a 0 degree
phase shift. If everything is roughly impedance matched, the signals
through the two paths cancel, resulting in very good isolation between
ports.

As the subject is combining, I have not looked into the losses of splitting,
but it would be 6 db for the simple resistor designs not counting the minor
losses. That would be 3 db for the ports and 3 db lost in the resistors.


Yep, that's correct.
http://www.microwaves101.com/encyclopedia/resistive_splitters.cfm

To combind signals you would get the loss of the resistors of 3 db and a
fraction of other loss.


Yep, that's correct.

I am using a HP 8924C for a test set. It has just about everything you can
think of for a service monitor. Calibrated from 30 to 1000 MHz but usuable
uncalibrated to about a half of a mhz.
http://www.amtronix.com/hp8924c60.htm


http://axfp.org/god-bless-the-hp-8924c-a-tale-and-tutorial-of-the-service-monitor/
Nice. I'm into opening a museum of antique test equipment:
http://802.11junk.com/jeffl/pics/home/slides/test-equip-mess.html

Yes, phasing harnesses on antennas are not totally loseless, but will be
mainly whatever the loss of the coax is between the elements.


Nope. A phasing harness is much like the Wilkinson combiner without
the balancing resistor. Isolation between antennas would be nice, but
kinda futile with the antennas that close. Like the Wilkinson
combiner, the cables are odd multiples of 1/4 wave electrical. Like
the Wilkinson, such phasing harnesses have a limited bandwidth, where
losses increase the further away one gets from resonance. In other
words, you can't supply a single number for the losses in a phasing
harness. What's needed are numbers for the losses at resonance and at
band edges.

At this time, I still don't know if a Wilkinson combiner or phasing
harness will have sufficient bandwidth to cover the FM broadcast band.
That's 20 Mhz bandwidth at 100 Mhz or Q=5. I don't think that's
possible. To make my life more difficult, it's not possible to easily
model coax cables using NEC2. I've been using a mythical 50 ohm open
wire line, which can be modeled.

I would recommend either a messy multistage Wilkinson power
splitter/combiner, or go the broadband route with a common CATV/FM
power splitter/combiner.

If were the origional poster and there were not too many transmitters near
me, I would try a good preamp first. Mast mounted if possiable as it is for
receive only.


Preamps are a mixed blessing. With a good antenna, they can pickup
signals at impressive distances. However, they can also overload
miserably if there is a nearby transmitter on a nearby frequency. The
directionality of a Yagi is a big help, but if the nearby transmitter
is too close, the amplifier will overload, desensitize, belch
intermod, or otherwise cause problems. At best, the tower mounted amp
should be used only to compensate for coax losses. Any more gain than
that reduces the dynamic range of the system. Therefore, if the coax
cables is fairly short, and the cable is low loss, I wouldn't bother
with an amplifier. If the coax cable run is long and/or the coax is
junk, a tower mounted amp might be worth trying.



--
Jeff Liebermann
150 Felker St #D
http://www.LearnByDestroying.com
Santa Cruz CA 95060 http://802.11junk.com
Skype: JeffLiebermann AE6KS 831-336-2558
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Stacking Satellite VHF and UHF F9FT Antennas [email protected] Antenna 2 December 3rd 05 09:10 AM
Stacking Big Wheel Antennas ? Dr Dave Antenna 5 May 6th 05 11:52 PM
Stacking Big Wheel Antennas??? Dr Dave Homebrew 1 May 6th 05 10:05 PM
Stacking Antennas Win Antenna 2 May 6th 04 10:05 PM
Stacking antennas Mark Atanovich Antenna 0 March 14th 04 05:28 PM


All times are GMT +1. The time now is 01:14 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017