RadioBanter

RadioBanter (https://www.radiobanter.com/)
-   Antenna (https://www.radiobanter.com/antenna/)
-   -   Dipoles, why height matters (https://www.radiobanter.com/antenna/209645-dipoles-why-height-matters.html)

[email protected] November 21st 14 09:05 PM

Dipoles, why height matters
 

For those that do not have a firm understanding of what the chart of
dipole height over ground shows, I offer the following explanation.

The charts show, for a dipole antenna at various heights in wavelengths
over perfect, very good, average, and extremely poor ground, the gain
and elevation angle of the antenna main lobe.

The main lobe is where the majority of the energy is radiated.

To understand what the charts mean in the real world, first you have
to understand a little bit about propagation of RF.

For a dipole antenna, there are two modes of propagation that are relevant,
and those are NVIS (Near Vertical Incidence Skywave) and skywave which
is sometimes called skip.

Both modes depend on the RF being reflected or refracted back toward
Earth by the ionosphere.

For NVIS mode, the RF is directed straight up, that is an elevation angle
close to 90 degrees is desired. The range of NVIS communications is on
the order of 50 - 650 km, depending on the state of the ionosphere. The
amateur bands where this is effective is limited primarily to the 160M
to 40M band, again depending on the state of the ionosphere. It is not
impossible to have NVIS communications on the higher bands, just much
less probable to happen.

For skywave mode, a low elevation mode is desired. Most of the literature
recommends angles of 30 degees or less. In this mode the RF "bounces"
at more obtuse angles, and with good conditions in the ionosphere, more
than once, providing communication over global distances. Skywave
depends heavily on the condition of the ionosphere and during sunspot
peaks often occurs well past 10M.

Now since a dipole with a main lobe at 90 degrees still has some gain
at low angles, though it can be 20 to 60 dB down from the main lobe,
when conditions are very good some stations can still be heard by
skywave mode, though it is a rarity and can not be depended on.

Conversely a dipole with a low elevation angle of the main lobe has some
gain at very high angles and can occasionly hear stations by NVIS mode,
but again it is a rarity.

The bottom line of all this is that if you desire NVIS communications,
you should mount your dipole at a height where the elevation angle is
close to 90 degrees while if you desire long distance communications
you should mount your dipole at a height where the elevation angle is
less than 30 degrees, or higher if possible.

If the required height is impractical at your location, then the
alternative is a ground mounted vertical or a close to ground mounted
ground plane antenna, which will have an elevation angle in the 20
degree range.



--
Jim Pennino

Wayne November 21st 14 10:22 PM

Dipoles, why height matters
 


wrote in message ...


For those that do not have a firm understanding of what the chart of
dipole height over ground shows, I offer the following explanation.


The charts show, for a dipole antenna at various heights in wavelengths
over perfect, very good, average, and extremely poor ground, the gain
and elevation angle of the antenna main lobe.


The main lobe is where the majority of the energy is radiated.


To understand what the charts mean in the real world, first you have
to understand a little bit about propagation of RF.


For a dipole antenna, there are two modes of propagation that are relevant,
and those are NVIS (Near Vertical Incidence Skywave) and skywave which
is sometimes called skip.


Both modes depend on the RF being reflected or refracted back toward
Earth by the ionosphere.


For NVIS mode, the RF is directed straight up, that is an elevation angle
close to 90 degrees is desired. The range of NVIS communications is on
the order of 50 - 650 km, depending on the state of the ionosphere. The
amateur bands where this is effective is limited primarily to the 160M
to 40M band, again depending on the state of the ionosphere. It is not
impossible to have NVIS communications on the higher bands, just much
less probable to happen.


For skywave mode, a low elevation mode is desired. Most of the literature
recommends angles of 30 degees or less. In this mode the RF "bounces"
at more obtuse angles, and with good conditions in the ionosphere, more
than once, providing communication over global distances. Skywave
depends heavily on the condition of the ionosphere and during sunspot
peaks often occurs well past 10M.


Now since a dipole with a main lobe at 90 degrees still has some gain
at low angles, though it can be 20 to 60 dB down from the main lobe,
when conditions are very good some stations can still be heard by
skywave mode, though it is a rarity and can not be depended on.


Conversely a dipole with a low elevation angle of the main lobe has some
gain at very high angles and can occasionly hear stations by NVIS mode,
but again it is a rarity.


The bottom line of all this is that if you desire NVIS communications,
you should mount your dipole at a height where the elevation angle is
close to 90 degrees while if you desire long distance communications
you should mount your dipole at a height where the elevation angle is
less than 30 degrees, or higher if possible.


If the required height is impractical at your location, then the
alternative is a ground mounted vertical or a close to ground mounted
ground plane antenna, which will have an elevation angle in the 20
degree range.


Along the lines of a "testimonial"...
I once lived in the center of a state that had an active 75 meter net. At
one point I was asked to be one of the net control stations because of my
consistent strong signals within the net.

The secret? A 75 meter dipole at 20 feet with 100 watts.
On longer paths, of course, the "big boys" kicked my butt big time.


Ian Jackson[_2_] November 21st 14 10:47 PM

Dipoles, why height matters
 
In message , Wayne
writes


wrote in message ...


For those that do not have a firm understanding of what the chart of
dipole height over ground shows, I offer the following explanation.


The charts show, for a dipole antenna at various heights in wavelengths
over perfect, very good, average, and extremely poor ground, the gain
and elevation angle of the antenna main lobe.


The main lobe is where the majority of the energy is radiated.


To understand what the charts mean in the real world, first you have
to understand a little bit about propagation of RF.


For a dipole antenna, there are two modes of propagation that are relevant,
and those are NVIS (Near Vertical Incidence Skywave) and skywave which
is sometimes called skip.


Both modes depend on the RF being reflected or refracted back toward
Earth by the ionosphere.


For NVIS mode, the RF is directed straight up, that is an elevation angle
close to 90 degrees is desired. The range of NVIS communications is on
the order of 50 - 650 km, depending on the state of the ionosphere. The
amateur bands where this is effective is limited primarily to the 160M
to 40M band, again depending on the state of the ionosphere. It is not
impossible to have NVIS communications on the higher bands, just much
less probable to happen.


For skywave mode, a low elevation mode is desired. Most of the literature
recommends angles of 30 degees or less. In this mode the RF "bounces"
at more obtuse angles, and with good conditions in the ionosphere, more
than once, providing communication over global distances. Skywave
depends heavily on the condition of the ionosphere and during sunspot
peaks often occurs well past 10M.


Now since a dipole with a main lobe at 90 degrees still has some gain
at low angles, though it can be 20 to 60 dB down from the main lobe,
when conditions are very good some stations can still be heard by
skywave mode, though it is a rarity and can not be depended on.


Conversely a dipole with a low elevation angle of the main lobe has some
gain at very high angles and can occasionly hear stations by NVIS mode,
but again it is a rarity.


The bottom line of all this is that if you desire NVIS communications,
you should mount your dipole at a height where the elevation angle is
close to 90 degrees while if you desire long distance communications
you should mount your dipole at a height where the elevation angle is
less than 30 degrees, or higher if possible.


If the required height is impractical at your location, then the
alternative is a ground mounted vertical or a close to ground mounted
ground plane antenna, which will have an elevation angle in the 20
degree range.


Along the lines of a "testimonial"...
I once lived in the center of a state that had an active 75 meter net.
At one point I was asked to be one of the net control stations because
of my consistent strong signals within the net.

The secret? A 75 meter dipole at 20 feet with 100 watts.
On longer paths, of course, the "big boys" kicked my butt big time.


Despite the obvious theory, and over 50 years in amateur radio, I still
find it hard to believe that, in real life, an 80m dipole at (say) 20'
ever really outperforms (at any distance) one at (say) 100'. Given the
choice, I know which one I would choose!
--
Ian

[email protected] November 21st 14 11:16 PM

Dipoles, why height matters
 
Ian Jackson wrote:

snip

Despite the obvious theory, and over 50 years in amateur radio, I still
find it hard to believe that, in real life, an 80m dipole at (say) 20'
ever really outperforms (at any distance) one at (say) 100'. Given the
choice, I know which one I would choose!


Try reading these:

http://www.qsl.net/wb5ude/nvis/
http://en.wikipedia.org/wiki/Near_ve...idence_skywave
http://www.w0ipl.net/ECom/NVIS/nvis.htm
http://kv5r.com/ham-radio/nvis-antennas/
http://www.arrl.org/nvis


--
Jim Pennino

[email protected] November 21st 14 11:57 PM

Dipoles, why height matters
 
On Friday, November 21, 2014 4:47:12 PM UTC-6, Ian Jackson wrote:
In message , Wayne
writes


wrote in message ...


For those that do not have a firm understanding of what the chart of
dipole height over ground shows, I offer the following explanation.


The charts show, for a dipole antenna at various heights in wavelengths
over perfect, very good, average, and extremely poor ground, the gain
and elevation angle of the antenna main lobe.


The main lobe is where the majority of the energy is radiated.


To understand what the charts mean in the real world, first you have
to understand a little bit about propagation of RF.


For a dipole antenna, there are two modes of propagation that are relevant,
and those are NVIS (Near Vertical Incidence Skywave) and skywave which
is sometimes called skip.


Both modes depend on the RF being reflected or refracted back toward
Earth by the ionosphere.


For NVIS mode, the RF is directed straight up, that is an elevation angle
close to 90 degrees is desired. The range of NVIS communications is on
the order of 50 - 650 km, depending on the state of the ionosphere. The
amateur bands where this is effective is limited primarily to the 160M
to 40M band, again depending on the state of the ionosphere. It is not
impossible to have NVIS communications on the higher bands, just much
less probable to happen.


For skywave mode, a low elevation mode is desired. Most of the literature
recommends angles of 30 degees or less. In this mode the RF "bounces"
at more obtuse angles, and with good conditions in the ionosphere, more
than once, providing communication over global distances. Skywave
depends heavily on the condition of the ionosphere and during sunspot
peaks often occurs well past 10M.


Now since a dipole with a main lobe at 90 degrees still has some gain
at low angles, though it can be 20 to 60 dB down from the main lobe,
when conditions are very good some stations can still be heard by
skywave mode, though it is a rarity and can not be depended on.


Conversely a dipole with a low elevation angle of the main lobe has some
gain at very high angles and can occasionly hear stations by NVIS mode,
but again it is a rarity.


The bottom line of all this is that if you desire NVIS communications,
you should mount your dipole at a height where the elevation angle is
close to 90 degrees while if you desire long distance communications
you should mount your dipole at a height where the elevation angle is
less than 30 degrees, or higher if possible.


If the required height is impractical at your location, then the
alternative is a ground mounted vertical or a close to ground mounted
ground plane antenna, which will have an elevation angle in the 20
degree range.


Along the lines of a "testimonial"...
I once lived in the center of a state that had an active 75 meter net.
At one point I was asked to be one of the net control stations because
of my consistent strong signals within the net.

The secret? A 75 meter dipole at 20 feet with 100 watts.
On longer paths, of course, the "big boys" kicked my butt big time.


Despite the obvious theory, and over 50 years in amateur radio, I still
find it hard to believe that, in real life, an 80m dipole at (say) 20'
ever really outperforms (at any distance) one at (say) 100'. Given the
choice, I know which one I would choose!
--
Ian


Dunno.. I've run some pretty low dipoles that did well for NVIS paths.
Mostly when camping. I had one out at Lake Amistad that was about 8 ft
off the ground, and I was only running 10w out with a FT-7. I was S9
or slightly over to most of the other guys in the state.

When I'm at the dirt patch my dipole is usually only about 25 ft or so
at the apex, and it does fairly well as long as the band is not buggered
up, which happens quite a bit in the early evening, or in the winter
when the MUF drops down real low.
Saying that, I would probably choose the high dipole also if I had a
choice. :) It would still do OK for NVIS, and a lot better than the low
one on DX paths.




Jerry Stuckle November 22nd 14 12:38 AM

Dipoles, why height matters
 
On 11/21/2014 5:22 PM, Wayne wrote:


wrote in message ...


For those that do not have a firm understanding of what the chart of
dipole height over ground shows, I offer the following explanation.


The charts show, for a dipole antenna at various heights in wavelengths
over perfect, very good, average, and extremely poor ground, the gain
and elevation angle of the antenna main lobe.


The main lobe is where the majority of the energy is radiated.


To understand what the charts mean in the real world, first you have
to understand a little bit about propagation of RF.


For a dipole antenna, there are two modes of propagation that are
relevant,
and those are NVIS (Near Vertical Incidence Skywave) and skywave which
is sometimes called skip.


Both modes depend on the RF being reflected or refracted back toward
Earth by the ionosphere.


For NVIS mode, the RF is directed straight up, that is an elevation angle
close to 90 degrees is desired. The range of NVIS communications is on
the order of 50 - 650 km, depending on the state of the ionosphere. The
amateur bands where this is effective is limited primarily to the 160M
to 40M band, again depending on the state of the ionosphere. It is not
impossible to have NVIS communications on the higher bands, just much
less probable to happen.


For skywave mode, a low elevation mode is desired. Most of the literature
recommends angles of 30 degees or less. In this mode the RF "bounces"
at more obtuse angles, and with good conditions in the ionosphere, more
than once, providing communication over global distances. Skywave
depends heavily on the condition of the ionosphere and during sunspot
peaks often occurs well past 10M.


Now since a dipole with a main lobe at 90 degrees still has some gain
at low angles, though it can be 20 to 60 dB down from the main lobe,
when conditions are very good some stations can still be heard by
skywave mode, though it is a rarity and can not be depended on.


Conversely a dipole with a low elevation angle of the main lobe has some
gain at very high angles and can occasionly hear stations by NVIS mode,
but again it is a rarity.


The bottom line of all this is that if you desire NVIS communications,
you should mount your dipole at a height where the elevation angle is
close to 90 degrees while if you desire long distance communications
you should mount your dipole at a height where the elevation angle is
less than 30 degrees, or higher if possible.


If the required height is impractical at your location, then the
alternative is a ground mounted vertical or a close to ground mounted
ground plane antenna, which will have an elevation angle in the 20
degree range.


Along the lines of a "testimonial"...
I once lived in the center of a state that had an active 75 meter net.
At one point I was asked to be one of the net control stations because
of my consistent strong signals within the net.

The secret? A 75 meter dipole at 20 feet with 100 watts.
On longer paths, of course, the "big boys" kicked my butt big time.


Gee, according to jimp, your antenna should have "sucked".

But then he isn't interested in facts that contradict his fantasies.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle November 22nd 14 12:41 AM

Dipoles, why height matters
 
On 11/21/2014 5:47 PM, Ian Jackson wrote:
In message , Wayne
writes


wrote in message ...


For those that do not have a firm understanding of what the chart of
dipole height over ground shows, I offer the following explanation.


The charts show, for a dipole antenna at various heights in wavelengths
over perfect, very good, average, and extremely poor ground, the gain
and elevation angle of the antenna main lobe.


The main lobe is where the majority of the energy is radiated.


To understand what the charts mean in the real world, first you have
to understand a little bit about propagation of RF.


For a dipole antenna, there are two modes of propagation that are
relevant,
and those are NVIS (Near Vertical Incidence Skywave) and skywave which
is sometimes called skip.


Both modes depend on the RF being reflected or refracted back toward
Earth by the ionosphere.


For NVIS mode, the RF is directed straight up, that is an elevation
angle
close to 90 degrees is desired. The range of NVIS communications is on
the order of 50 - 650 km, depending on the state of the ionosphere. The
amateur bands where this is effective is limited primarily to the 160M
to 40M band, again depending on the state of the ionosphere. It is not
impossible to have NVIS communications on the higher bands, just much
less probable to happen.


For skywave mode, a low elevation mode is desired. Most of the
literature
recommends angles of 30 degees or less. In this mode the RF "bounces"
at more obtuse angles, and with good conditions in the ionosphere, more
than once, providing communication over global distances. Skywave
depends heavily on the condition of the ionosphere and during sunspot
peaks often occurs well past 10M.


Now since a dipole with a main lobe at 90 degrees still has some gain
at low angles, though it can be 20 to 60 dB down from the main lobe,
when conditions are very good some stations can still be heard by
skywave mode, though it is a rarity and can not be depended on.


Conversely a dipole with a low elevation angle of the main lobe has some
gain at very high angles and can occasionly hear stations by NVIS mode,
but again it is a rarity.


The bottom line of all this is that if you desire NVIS communications,
you should mount your dipole at a height where the elevation angle is
close to 90 degrees while if you desire long distance communications
you should mount your dipole at a height where the elevation angle is
less than 30 degrees, or higher if possible.


If the required height is impractical at your location, then the
alternative is a ground mounted vertical or a close to ground mounted
ground plane antenna, which will have an elevation angle in the 20
degree range.


Along the lines of a "testimonial"...
I once lived in the center of a state that had an active 75 meter net.
At one point I was asked to be one of the net control stations because
of my consistent strong signals within the net.

The secret? A 75 meter dipole at 20 feet with 100 watts.
On longer paths, of course, the "big boys" kicked my butt big time.


Despite the obvious theory, and over 50 years in amateur radio, I still
find it hard to believe that, in real life, an 80m dipole at (say) 20'
ever really outperforms (at any distance) one at (say) 100'. Given the
choice, I know which one I would choose!


I never said a dipole at 20' outperforms one at 100'. But I DID say a
dipole at 20' does NOT necessarily "suck". It can be a good antenna,
depending on a lot of other factors.

I've also run dipoles - I got WAS on 75 meters from Iowa with an
inverted VEE running from 50' to near ground. And I had a strong signal
on the Iowa 75M SSB net.

Doesn't sound like it "sucked" to me.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

[email protected] November 22nd 14 01:19 AM

Dipoles, why height matters
 
Jerry Stuckle wrote:

snip

I've also run dipoles - I got WAS on 75 meters from Iowa with an
inverted VEE running from 50' to near ground. And I had a strong signal
on the Iowa 75M SSB net.


I have lots of strong signal reports from around the country on 6M AM
running 3W into a 2 foot collapsible whip.

Of course it was at the height of sunspot cycle 19 and says NOTHING about
the effectiveness of the antenna.



--
Jim Pennino

[email protected] November 22nd 14 01:22 AM

Dipoles, why height matters
 
Jerry Stuckle wrote:
On 11/21/2014 5:22 PM, Wayne wrote:


snip

Along the lines of a "testimonial"...
I once lived in the center of a state that had an active 75 meter net.
At one point I was asked to be one of the net control stations because
of my consistent strong signals within the net.

The secret? A 75 meter dipole at 20 feet with 100 watts.
On longer paths, of course, the "big boys" kicked my butt big time.


Gee, according to jimp, your antenna should have "sucked".


Which shows you are incapapble of understanding the difference between
NVIS propagation and skywave propagation or anything else that I wrote.

If you did understand it, you would know that what he said is TOTALLY
consistant with what I wrote.

But then he isn't interested in facts that contradict his fantasies.


But then your aren't interested in facts that contradict your fantasies.

--
Jim Pennino

Jerry Stuckle November 22nd 14 01:32 AM

Dipoles, why height matters
 
On 11/21/2014 8:19 PM, wrote:
Jerry Stuckle wrote:

snip

I've also run dipoles - I got WAS on 75 meters from Iowa with an
inverted VEE running from 50' to near ground. And I had a strong signal
on the Iowa 75M SSB net.


I have lots of strong signal reports from around the country on 6M AM
running 3W into a 2 foot collapsible whip.

Of course it was at the height of sunspot cycle 19 and says NOTHING about
the effectiveness of the antenna.




Which has absolutely nothing to do with your comment about a dipole on
75 meters. But you're too stoopid to understand that.

--
==================
Remove the "x" from my email address
Jerry Stuckle

==================


All times are GMT +1. The time now is 06:46 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
RadioBanter.com