Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
On 7/8/2015 2:38 PM, John S wrote:
On 7/8/2015 10:48 AM, rickman wrote: On 7/8/2015 10:09 AM, John S wrote: On 7/2/2015 1:38 PM, rickman wrote: On 7/2/2015 1:56 PM, Ralph Mowery wrote: "Jerry Stuckle" wrote in message ... Try this - connect the output of an HF transmitter to an SWR bridge. Now connect a piece of 75 ohm coax such as RG-59 to the output of the SWR meter, and connect that to a 75 ohm resistive load. Do you think the SWR bridge will show a 1:1 SWR? Not a chance. It will be 1.5:1. What you have described is a case of using the wrong swr bridge. You are trying to use a 50 ohm bridge on a 75 ohm system. If a 75 ohm bridge is used it will show a 1:1 SWR. The real SWR is 1:1. With a 75 ohm line and 75 ohm load there is no reflected power. My knowledge of antenna systems is limited, but I do know that this is correct, there will be no reflection from the antenna. If there is no reflections from the antenna, how can there be a loss in the source end? There is NO power returned according to your own statement. I don't see any contradiction. The power comes from the source through the source impedance. The source impedance will create a loss, no? If the transmitter output is 50 ohms there will be a loss in this matching that will result in less power being delivered to the feed line, but that will not result in reflections in the feed line. Why? What causes the loss? The transmitter output resistance? So that would mean that one can never achieve more that 50% efficiency at the transmitter's OUTPUT! And that would mean that a 1000W transmitter is dissipating 500 watts under the BEST circumstances. Good luck on getting that to work to your satisfaction. Maybe "loss" isn't the right term then. The output of a 50 ohm source driving a 75 ohm load will deliver 4% less power into the load than when driving a 50 ohm load. That comes to -0.177 dB. Is there any part of that you disagree with? All of it. Let's say you have a 1A source and it has a 50 ohm impedance in series with its output. With a 50 ohm load it will provide 50W to the load. With a 75 ohm load it will provide 75W to the load. The only difference is that the 50 ohm load will cause the source voltage (before the series impedance) to be 100V while the 75 ohm load will require 112V (before the series impedance). If the series impedance is 0 +/- j75 ohms, it will have no power loss. If the series impedance is 50 + j0 it will have a 50W loss. Oops! Source voltage will be 70.7V for 50 ohms and 90V for 75 ohms and dissipation-less output impedance. |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Vertical Antenna Performance Question | Antenna | |||
Antenna Question: Vertical Whip Vs. Type X | Scanner | |||
Question about 20-meter monoband vertical (kinda long - antenna gurus welcome) | Antenna | |||
Technical Vertical Antenna Question | Shortwave | |||
Short STACKED Vertical {Tri-Band} BroomStick Antenna [Was: Wire ant question] | Shortwave |