RadioBanter

RadioBanter (https://www.radiobanter.com/)
-   Antenna (https://www.radiobanter.com/antenna/)
-   -   Parallel coax (https://www.radiobanter.com/antenna/220359-parallel-coax.html)

Jerry Stuckle September 28th 15 07:53 PM

Parallel coax
 
On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.


I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


No, return loss is calculated as P reflected / P out. P out is the
constant with varying load; P reflected is the variable. The ratio is
always less than one, hence the calculation is always negative DB.

Please point to a reliable source which agrees with you.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 28th 15 07:55 PM

Parallel coax
 
On 9/28/2015 2:19 PM, rickman wrote:
On 9/28/2015 2:01 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/28/2015 11:59 AM, Wayne wrote:


"Ian Jackson" wrote in message
...
In message , rickman
writes



Definition of Return Loss

In technical terms, RL is the ratio of the light reflected back from
a device under test, Pout, to the light launched into that device,
Pin, usually expressed as a negative number in dB.

RL = 10 log10(Pout/Pin)

Here is a link for a table of return loss and VSWR....

http://www.jampro.com/uploads/tech_d.../VSWRChart.pdf

It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR.


I'm surprised to see negative quantities. For 50 years, I've always
understood the Return Loss Ratio (RLR) to be exactly what it says on
the tin, ie the ratio (in dB) of the LOSS (the attenuation) of the
reflected signal wrt the incident signal. This is a +ve quantity.
Things are already sufficiently confusing without having to start
thinking in unnecessary -ve figures!

I think the table headings are using a dash, not a negative sign.
Return loss- dB


# Look at the equation and you will understand. When the ratio is less
# than one, the log is negative.

But the ratio is never less than one for passive devices.

If all the power forward is reflected, then the power ratio is 1 to 1.
That's 0 dB return loss from the equation.

Return loss is a positive number.


I'm not so sure. It depends on how you define it. What if half the
power is reflected? The equation above and *many* other sources say
that is 10 log(0.5/1) = -3 dB. A few sources take exception to this and
say it is 10 log(1/0.5) = 3 dB.

At this point I dunno.


Rickman, you are correct. The return loss is calculated as return value
(the variable) divided by the output value (the constant).

I haven't seen any reliable sources which say otherwise.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

rickman September 28th 15 08:02 PM

Parallel coax
 
On 9/28/2015 2:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line will
remain.
# Even if the real part of your load impedance is matched to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and the
returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
infinity. At the same point, the returned power measured in watts is 0.


I believe that is exactly what I said in the portions of my post which
you trimmed. These values for RF return loss match exactly the equation
which you are saying is not used in RF. So which is it, the return loss
table is correct with negative values of return loss or the equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.


Are you being pedantic that -1 dB is not lower than -10 dB? It is not
numerically lower in value, but is lower in magnitude and it is a lower
loss. I even referred to the magnitude in my post. But then that was
the same part you snipped which I referred to earlier.

"It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR."

--

Rick

Ian Jackson[_2_] September 28th 15 08:03 PM

Parallel coax
 
In message , Jerry Stuckle
writes


You said return loss increases with lower SWR. It does not.

It does if you are used to +ve values of RLR!

--
Ian

rickman September 28th 15 08:09 PM

Parallel coax
 
On 9/28/2015 2:53 PM, Jerry Stuckle wrote:
On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


No, return loss is calculated as P reflected / P out. P out is the
constant with varying load; P reflected is the variable. The ratio is
always less than one, hence the calculation is always negative DB.

Please point to a reliable source which agrees with you.


I'd like to see a reliable source for either position.

From the references in the wikipedia article...

http://ieeexplore.ieee.org/xpl/freea...number=5162049

https://en.wikipedia.org/wiki/Return_loss

I didn't pay for the article, but it seems pretty clear that the authors
are saying the term is often incorrectly used. I have found other loss
equations in the form of Ls = 10 log (pt/pa) where pt is the input power
and pa is the output power. Even this is not quite the same since it
refers to the measured power at each end rather than the "lost" power.
The point is the input power is in the numerator yielding a positive dB
result for all cases.

I'd be happy to find anything authoritative.

--

Rick

rickman September 28th 15 08:10 PM

Parallel coax
 
On 9/28/2015 2:55 PM, Jerry Stuckle wrote:
On 9/28/2015 2:19 PM, rickman wrote:
On 9/28/2015 2:01 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/28/2015 11:59 AM, Wayne wrote:


"Ian Jackson" wrote in message
...
In message , rickman
writes



Definition of Return Loss

In technical terms, RL is the ratio of the light reflected back from
a device under test, Pout, to the light launched into that device,
Pin, usually expressed as a negative number in dB.

RL = 10 log10(Pout/Pin)

Here is a link for a table of return loss and VSWR....

http://www.jampro.com/uploads/tech_d.../VSWRChart.pdf

It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR.


I'm surprised to see negative quantities. For 50 years, I've always
understood the Return Loss Ratio (RLR) to be exactly what it says on
the tin, ie the ratio (in dB) of the LOSS (the attenuation) of the
reflected signal wrt the incident signal. This is a +ve quantity.
Things are already sufficiently confusing without having to start
thinking in unnecessary -ve figures!

I think the table headings are using a dash, not a negative sign.
Return loss- dB

# Look at the equation and you will understand. When the ratio is less
# than one, the log is negative.

But the ratio is never less than one for passive devices.

If all the power forward is reflected, then the power ratio is 1 to 1.
That's 0 dB return loss from the equation.

Return loss is a positive number.


I'm not so sure. It depends on how you define it. What if half the
power is reflected? The equation above and *many* other sources say
that is 10 log(0.5/1) = -3 dB. A few sources take exception to this and
say it is 10 log(1/0.5) = 3 dB.

At this point I dunno.


Rickman, you are correct. The return loss is calculated as return value
(the variable) divided by the output value (the constant).

I haven't seen any reliable sources which say otherwise.


I haven't seen any reliable sources that say either. Have you?


--

Rick

Wayne September 28th 15 08:22 PM

Parallel coax
 


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.


I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection coefficient
in dB. Since power is proportional to the square of the voltage, return loss
is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is small
relative to the incident power, which indicates good impedance match from
source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels. The
standard output for the return loss is a positive value, so a large return
loss value actually means that the power in the reflected wave is small
compared to the power in the incident wave and indicates a better impedance
match. The return loss can be calculated from the reflection coefficient
with the equation:





Jerry Stuckle September 28th 15 09:02 PM

Parallel coax
 
On 9/28/2015 3:02 PM, rickman wrote:
On 9/28/2015 2:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line will
remain.
# Even if the real part of your load impedance is matched to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and the
returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
infinity. At the same point, the returned power measured in watts
is 0.

I believe that is exactly what I said in the portions of my post which
you trimmed. These values for RF return loss match exactly the equation
which you are saying is not used in RF. So which is it, the return loss
table is correct with negative values of return loss or the equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.


Are you being pedantic that -1 dB is not lower than -10 dB? It is not
numerically lower in value, but is lower in magnitude and it is a lower
loss. I even referred to the magnitude in my post. But then that was
the same part you snipped which I referred to earlier.

"It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR."


No, I am not being pedantic. -1 is greater than -10. The fact it is a
negative number makes all the difference - as any engineer who knows
what he's talking about will tell you.

What you claim is like saying 1/100 is greater than 1/10.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 28th 15 09:05 PM

Parallel coax
 
On 9/28/2015 3:09 PM, rickman wrote:
On 9/28/2015 2:53 PM, Jerry Stuckle wrote:
On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


No, return loss is calculated as P reflected / P out. P out is the
constant with varying load; P reflected is the variable. The ratio is
always less than one, hence the calculation is always negative DB.

Please point to a reliable source which agrees with you.


I'd like to see a reliable source for either position.

From the references in the wikipedia article...

http://ieeexplore.ieee.org/xpl/freea...number=5162049

https://en.wikipedia.org/wiki/Return_loss

I didn't pay for the article, but it seems pretty clear that the authors
are saying the term is often incorrectly used. I have found other loss
equations in the form of Ls = 10 log (pt/pa) where pt is the input power
and pa is the output power. Even this is not quite the same since it
refers to the measured power at each end rather than the "lost" power.
The point is the input power is in the numerator yielding a positive dB
result for all cases.

I'd be happy to find anything authoritative.


You'll probably have to pay for the article to get something
authoritative. Or you could swing by a university bookstore and check
out some of the EE texts. You might find one in the local library, but
I doubt it.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 28th 15 09:07 PM

Parallel coax
 
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a large
return loss value actually means that the power in the reflected wave is
small compared to the power in the incident wave and indicates a better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 28th 15 09:11 PM

Parallel coax
 
On 9/28/2015 3:10 PM, rickman wrote:
On 9/28/2015 2:55 PM, Jerry Stuckle wrote:
On 9/28/2015 2:19 PM, rickman wrote:
On 9/28/2015 2:01 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/28/2015 11:59 AM, Wayne wrote:


"Ian Jackson" wrote in message
...
In message , rickman
writes



Definition of Return Loss

In technical terms, RL is the ratio of the light reflected back from
a device under test, Pout, to the light launched into that device,
Pin, usually expressed as a negative number in dB.

RL = 10 log10(Pout/Pin)

Here is a link for a table of return loss and VSWR....

http://www.jampro.com/uploads/tech_d.../VSWRChart.pdf

It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR.


I'm surprised to see negative quantities. For 50 years, I've always
understood the Return Loss Ratio (RLR) to be exactly what it says on
the tin, ie the ratio (in dB) of the LOSS (the attenuation) of the
reflected signal wrt the incident signal. This is a +ve quantity.
Things are already sufficiently confusing without having to start
thinking in unnecessary -ve figures!

I think the table headings are using a dash, not a negative sign.
Return loss- dB

# Look at the equation and you will understand. When the ratio is less
# than one, the log is negative.

But the ratio is never less than one for passive devices.

If all the power forward is reflected, then the power ratio is 1 to 1.
That's 0 dB return loss from the equation.

Return loss is a positive number.

I'm not so sure. It depends on how you define it. What if half the
power is reflected? The equation above and *many* other sources say
that is 10 log(0.5/1) = -3 dB. A few sources take exception to this and
say it is 10 log(1/0.5) = 3 dB.

At this point I dunno.


Rickman, you are correct. The return loss is calculated as return value
(the variable) divided by the output value (the constant).

I haven't seen any reliable sources which say otherwise.


I haven't seen any reliable sources that say either. Have you?



Not for 40 years or so. But then I haven't looked for one since
college. I've just dealt with RF engineers, who have used the same
terminology.

They use negative numbers for loss to figure the gain of the entire
system. It doesn't matter which direction the loss is in; loss is a
negative number (and gain is a positive number).

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

rickman September 28th 15 09:13 PM

Parallel coax
 
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html


This page is clear, but it is just one guy citing no references, not
exactly authoritative.


http://www.mogami.com/e/cad/vswr.html


This page is not at all clear and only expresses return loss in terms of
the impedances. Following through on the calculations give negative
values for RL.


http://www.microwaves101.com/encyclo...swr-calculator


Offers a definition of RL in terms of gamma. Far from authoritative.
Definition of gamma is in terms of VSWR and VSWR in terms of gamma.


http://www.amphenolrf.com/vswr-conversion-chart/


Convention is to give positive values in tables.


From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.


You didn't cite the relevant section...

Sign

Properly, loss quantities, when expressed in decibels, should be
positive numbers.[note 1] However, return loss has historically been
expressed as a negative number, and this convention is still widely
found in the literature.[1]


http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a large
return loss value actually means that the power in the reflected wave is
small compared to the power in the incident wave and indicates a better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:


This one is a bit confusing. The words in the first sentence say one
thing and the rest say something different. I don't see an equation in
terms of the power that I can understand without interpreting their
programming language.

At this point I guess the issue is very muddy with usage in both camps.
I think the wiki page indicates that with the section on Sign.

What really bugs me is why return loss is in terms of the loss while
other loss figures are in terms of the remaining power. Or did I find
an anomalous reference for that one?

--

Rick

rickman September 28th 15 09:14 PM

Parallel coax
 
On 9/28/2015 4:07 PM, Jerry Stuckle wrote:
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a large
return loss value actually means that the power in the reflected wave is
small compared to the power in the incident wave and indicates a better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?


I provided the IEEE paper cited by wikipedia. Anyone care to pay for
it? IEEE is seldom free. Who else will you accept?

--

Rick

rickman September 28th 15 09:15 PM

Parallel coax
 
On 9/28/2015 4:02 PM, Jerry Stuckle wrote:
On 9/28/2015 3:02 PM, rickman wrote:
On 9/28/2015 2:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line will
remain.
# Even if the real part of your load impedance is matched to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and the
returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
infinity. At the same point, the returned power measured in watts
is 0.

I believe that is exactly what I said in the portions of my post which
you trimmed. These values for RF return loss match exactly the equation
which you are saying is not used in RF. So which is it, the return loss
table is correct with negative values of return loss or the equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.


Are you being pedantic that -1 dB is not lower than -10 dB? It is not
numerically lower in value, but is lower in magnitude and it is a lower
loss. I even referred to the magnitude in my post. But then that was
the same part you snipped which I referred to earlier.

"It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR."


No, I am not being pedantic. -1 is greater than -10. The fact it is a
negative number makes all the difference - as any engineer who knows
what he's talking about will tell you.


Except that I clearly stated I was referring to the magnitude.

--

Rick

Jerry Stuckle September 28th 15 09:33 PM

Parallel coax
 
On 9/28/2015 4:15 PM, rickman wrote:
On 9/28/2015 4:02 PM, Jerry Stuckle wrote:
On 9/28/2015 3:02 PM, rickman wrote:
On 9/28/2015 2:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away
but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the
SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line
will
remain.
# Even if the real part of your load impedance is matched to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of
return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are
negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and the
returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
infinity. At the same point, the returned power measured in watts
is 0.

I believe that is exactly what I said in the portions of my post which
you trimmed. These values for RF return loss match exactly the
equation
which you are saying is not used in RF. So which is it, the return
loss
table is correct with negative values of return loss or the equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.

Are you being pedantic that -1 dB is not lower than -10 dB? It is not
numerically lower in value, but is lower in magnitude and it is a lower
loss. I even referred to the magnitude in my post. But then that was
the same part you snipped which I referred to earlier.

"It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR."


No, I am not being pedantic. -1 is greater than -10. The fact it is a
negative number makes all the difference - as any engineer who knows
what he's talking about will tell you.


Except that I clearly stated I was referring to the magnitude.


Magnitude without direction is meaningless.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 28th 15 09:34 PM

Parallel coax
 
On 9/28/2015 4:14 PM, rickman wrote:
On 9/28/2015 4:07 PM, Jerry Stuckle wrote:
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are
negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation
has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a large
return loss value actually means that the power in the reflected wave is
small compared to the power in the incident wave and indicates a better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?


I provided the IEEE paper cited by wikipedia. Anyone care to pay for
it? IEEE is seldom free. Who else will you accept?


I'm not interested. I know what it says. Guess I should have kept up
my IEEE membership, but it just wasn't worth it.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Roger Hayter September 28th 15 09:48 PM

Parallel coax
 
rickman wrote:

On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html


This page is clear, but it is just one guy citing no references, not
exactly authoritative.


http://www.mogami.com/e/cad/vswr.html


This page is not at all clear and only expresses return loss in terms of
the impedances. Following through on the calculations give negative
values for RL.


http://www.microwaves101.com/encyclo...swr-calculator


Offers a definition of RL in terms of gamma. Far from authoritative.
Definition of gamma is in terms of VSWR and VSWR in terms of gamma.


http://www.amphenolrf.com/vswr-conversion-chart/


Convention is to give positive values in tables.


From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.


You didn't cite the relevant section...

Sign

Properly, loss quantities, when expressed in decibels, should be
positive numbers.[note 1] However, return loss has historically been
expressed as a negative number, and this convention is still widely
found in the literature.[1]


http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a large
return loss value actually means that the power in the reflected wave is
small compared to the power in the incident wave and indicates a better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:


This one is a bit confusing. The words in the first sentence say one
thing and the rest say something different. I don't see an equation in
terms of the power that I can understand without interpreting their
programming language.

At this point I guess the issue is very muddy with usage in both camps.
I think the wiki page indicates that with the section on Sign.

What really bugs me is why return loss is in terms of the loss while
other loss figures are in terms of the remaining power. Or did I find
an anomalous reference for that one?


It would probably make more sense to call return loss "return gain",
but, since it is always less than one, that would merely cause a
different set of ambiguities.


--
Roger Hayter

rickman September 28th 15 10:17 PM

Parallel coax
 
On 9/28/2015 4:33 PM, Jerry Stuckle wrote:
On 9/28/2015 4:15 PM, rickman wrote:
On 9/28/2015 4:02 PM, Jerry Stuckle wrote:
On 9/28/2015 3:02 PM, rickman wrote:
On 9/28/2015 2:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away
but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the
SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line
will
remain.
# Even if the real part of your load impedance is matched to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of
return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are
negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and the
returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
infinity. At the same point, the returned power measured in watts
is 0.

I believe that is exactly what I said in the portions of my post which
you trimmed. These values for RF return loss match exactly the
equation
which you are saying is not used in RF. So which is it, the return
loss
table is correct with negative values of return loss or the equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.

Are you being pedantic that -1 dB is not lower than -10 dB? It is not
numerically lower in value, but is lower in magnitude and it is a lower
loss. I even referred to the magnitude in my post. But then that was
the same part you snipped which I referred to earlier.

"It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR."


No, I am not being pedantic. -1 is greater than -10. The fact it is a
negative number makes all the difference - as any engineer who knows
what he's talking about will tell you.


Except that I clearly stated I was referring to the magnitude.


Magnitude without direction is meaningless.


Lol. There is only one direction for return loss.

--

Rick

rickman September 28th 15 10:18 PM

Parallel coax
 
On 9/28/2015 4:34 PM, Jerry Stuckle wrote:
On 9/28/2015 4:14 PM, rickman wrote:
On 9/28/2015 4:07 PM, Jerry Stuckle wrote:
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are
negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and the
# returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation
has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a large
return loss value actually means that the power in the reflected wave is
small compared to the power in the incident wave and indicates a better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?


I provided the IEEE paper cited by wikipedia. Anyone care to pay for
it? IEEE is seldom free. Who else will you accept?


I'm not interested. I know what it says. Guess I should have kept up
my IEEE membership, but it just wasn't worth it.


So share with the rest of us. What does it say?

--

Rick

Ian Jackson[_2_] September 28th 15 11:18 PM

Parallel coax
 
In message , Roger Hayter
writes



It would probably make more sense to call return loss "return gain",
but, since it is always less than one, that would merely cause a
different set of ambiguities.


The reflected signal is an attenuated version of the forward (source)
signal. It is a 'loss' - in exactly the same way as the signal at the
output end of an attenuator is an attenuated version of the source
signal at the input end. The RLR (in dB) is the ratio of the what you
put in to what you get out. It cannot be less than 1, so the RLR is in
positive dB. There is absolutely no ambiguity. No one in RF engineering
quotes or uses negative values for RLR (or for attenuators). The greater
the RLR, the less signal is reflected.



--
Ian

Ian Jackson[_2_] September 28th 15 11:21 PM

Parallel coax
 
In message , Jerry Stuckle
writes
On 9/28/2015 3:10 PM, rickman wrote:
On 9/28/2015 2:55 PM, Jerry Stuckle wrote:
On 9/28/2015 2:19 PM, rickman wrote:
On 9/28/2015 2:01 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/28/2015 11:59 AM, Wayne wrote:


"Ian Jackson" wrote in message
...
In message , rickman
writes



Definition of Return Loss

In technical terms, RL is the ratio of the light reflected back from
a device under test, Pout, to the light launched into that device,
Pin, usually expressed as a negative number in dB.

RL = 10 log10(Pout/Pin)

Here is a link for a table of return loss and VSWR....

http://www.jampro.com/uploads/tech_d.../VSWRChart.pdf

It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR.


I'm surprised to see negative quantities. For 50 years, I've always
understood the Return Loss Ratio (RLR) to be exactly what it says on
the tin, ie the ratio (in dB) of the LOSS (the attenuation) of the
reflected signal wrt the incident signal. This is a +ve quantity.
Things are already sufficiently confusing without having to start
thinking in unnecessary -ve figures!

I think the table headings are using a dash, not a negative sign.
Return loss- dB

# Look at the equation and you will understand. When the ratio is less
# than one, the log is negative.

But the ratio is never less than one for passive devices.

If all the power forward is reflected, then the power ratio is 1 to 1.
That's 0 dB return loss from the equation.

Return loss is a positive number.

I'm not so sure. It depends on how you define it. What if half the
power is reflected? The equation above and *many* other sources say
that is 10 log(0.5/1) = -3 dB. A few sources take exception to this and
say it is 10 log(1/0.5) = 3 dB.

At this point I dunno.


Rickman, you are correct. The return loss is calculated as return value
(the variable) divided by the output value (the constant).

I haven't seen any reliable sources which say otherwise.


I haven't seen any reliable sources that say either. Have you?



Not for 40 years or so. But then I haven't looked for one since
college. I've just dealt with RF engineers, who have used the same
terminology.

They use negative numbers for loss to figure the gain of the entire
system. It doesn't matter which direction the loss is in; loss is a
negative number (and gain is a positive number).

A loss is only negative if it is being thought of as gain. If it's a
loss, its value is positive.
--
Ian

rickman September 28th 15 11:47 PM

Parallel coax
 
On 9/28/2015 6:18 PM, Ian Jackson wrote:
In message , Roger Hayter
writes



It would probably make more sense to call return loss "return gain",
but, since it is always less than one, that would merely cause a
different set of ambiguities.


The reflected signal is an attenuated version of the forward (source)
signal. It is a 'loss' - in exactly the same way as the signal at the
output end of an attenuator is an attenuated version of the source
signal at the input end. The RLR (in dB) is the ratio of the what you
put in to what you get out. It cannot be less than 1, so the RLR is in
positive dB. There is absolutely no ambiguity. No one in RF engineering
quotes or uses negative values for RLR (or for attenuators). The greater
the RLR, the less signal is reflected.


I have seen a number of references that give the formula as Pout - Pin.
Clearly both forms are in use. I can offer a book that shows a graph
of negative RL values.

https://books.google.com/books?id=nH...0ratio&f=false

--

Rick

John S September 29th 15 12:12 AM

Parallel coax
 
On 9/28/2015 1:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line will
remain.
# Even if the real part of your load impedance is matched to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which should be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I included
the VSWR vs return loss table link. You didn't comment on that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and the
returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
infinity. At the same point, the returned power measured in watts is 0.


I believe that is exactly what I said in the portions of my post which
you trimmed. These values for RF return loss match exactly the equation
which you are saying is not used in RF. So which is it, the return loss
table is correct with negative values of return loss or the equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.


It does.

Jerry Stuckle September 29th 15 12:52 AM

Parallel coax
 
On 9/28/2015 5:17 PM, rickman wrote:
On 9/28/2015 4:33 PM, Jerry Stuckle wrote:
On 9/28/2015 4:15 PM, rickman wrote:
On 9/28/2015 4:02 PM, Jerry Stuckle wrote:
On 9/28/2015 3:02 PM, rickman wrote:
On 9/28/2015 2:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message
...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away
but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the
SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the
line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line
will
remain.
# Even if the real part of your load impedance is matched
to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of
return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An
SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which
should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are
negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and
the
returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
infinity. At the same point, the returned power measured in watts
is 0.

I believe that is exactly what I said in the portions of my post
which
you trimmed. These values for RF return loss match exactly the
equation
which you are saying is not used in RF. So which is it, the return
loss
table is correct with negative values of return loss or the
equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.

Are you being pedantic that -1 dB is not lower than -10 dB? It is not
numerically lower in value, but is lower in magnitude and it is a
lower
loss. I even referred to the magnitude in my post. But then that was
the same part you snipped which I referred to earlier.

"It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR."


No, I am not being pedantic. -1 is greater than -10. The fact it is a
negative number makes all the difference - as any engineer who knows
what he's talking about will tell you.

Except that I clearly stated I was referring to the magnitude.


Magnitude without direction is meaningless.


Lol. There is only one direction for return loss.


Yes - the loss is a negative gain - hence the use of negative db values.

You can't just give a magnitude. You need to specify the direction,
also. You seem to have a very hard time understanding such a simple
concept - one that was taught in freshman physics.
--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 29th 15 12:54 AM

Parallel coax
 
On 9/28/2015 7:12 PM, John S wrote:
On 9/28/2015 1:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line will
remain.
# Even if the real part of your load impedance is matched to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics. They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and the
returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE
infinity. At the same point, the returned power measured in watts
is 0.

I believe that is exactly what I said in the portions of my post which
you trimmed. These values for RF return loss match exactly the equation
which you are saying is not used in RF. So which is it, the return loss
table is correct with negative values of return loss or the equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.

Please cite a reliable reference that says it does. Even the table Rick
cited shows a negative value for return SWR.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 29th 15 12:55 AM

Parallel coax
 
On 9/28/2015 5:18 PM, rickman wrote:
On 9/28/2015 4:34 PM, Jerry Stuckle wrote:
On 9/28/2015 4:14 PM, rickman wrote:
On 9/28/2015 4:07 PM, Jerry Stuckle wrote:
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are
negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and
the
# returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation
has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The
ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a
large
return loss value actually means that the power in the reflected
wave is
small compared to the power in the incident wave and indicates a
better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?

I provided the IEEE paper cited by wikipedia. Anyone care to pay for
it? IEEE is seldom free. Who else will you accept?


I'm not interested. I know what it says. Guess I should have kept up
my IEEE membership, but it just wasn't worth it.


So share with the rest of us. What does it say?


Exactly what your table showed. But you mentioned the resource, not me.
You pay for it or you've just once again you're full of it.


--
==================
Remove the "x" from my email address
Jerry Stuckle

==================

Jerry Stuckle September 29th 15 12:57 AM

Parallel coax
 
On 9/28/2015 6:18 PM, Ian Jackson wrote:
In message , Roger Hayter
writes



It would probably make more sense to call return loss "return gain",
but, since it is always less than one, that would merely cause a
different set of ambiguities.


The reflected signal is an attenuated version of the forward (source)
signal. It is a 'loss' - in exactly the same way as the signal at the
output end of an attenuator is an attenuated version of the source
signal at the input end. The RLR (in dB) is the ratio of the what you
put in to what you get out. It cannot be less than 1, so the RLR is in
positive dB. There is absolutely no ambiguity. No one in RF engineering
quotes or uses negative values for RLR (or for attenuators). The greater
the RLR, the less signal is reflected.




The ratio of output to input can never be greater than one - so the log
of that can never be positive.

I.E. 100W in and 50W out is -3db, not +3db.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 29th 15 12:59 AM

Parallel coax
 
On 9/28/2015 6:21 PM, Ian Jackson wrote:
In message , Jerry Stuckle
writes
On 9/28/2015 3:10 PM, rickman wrote:
On 9/28/2015 2:55 PM, Jerry Stuckle wrote:
On 9/28/2015 2:19 PM, rickman wrote:
On 9/28/2015 2:01 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/28/2015 11:59 AM, Wayne wrote:


"Ian Jackson" wrote in message
...
In message , rickman
writes



Definition of Return Loss

In technical terms, RL is the ratio of the light reflected back
from
a device under test, Pout, to the light launched into that device,
Pin, usually expressed as a negative number in dB.

RL = 10 log10(Pout/Pin)

Here is a link for a table of return loss and VSWR....

http://www.jampro.com/uploads/tech_d.../VSWRChart.pdf

It shows a higher return loss (assuming you mean magnitude
since the
values are all negative) for lower VSWR.


I'm surprised to see negative quantities. For 50 years, I've always
understood the Return Loss Ratio (RLR) to be exactly what it
says on
the tin, ie the ratio (in dB) of the LOSS (the attenuation) of the
reflected signal wrt the incident signal. This is a +ve quantity.
Things are already sufficiently confusing without having to start
thinking in unnecessary -ve figures!

I think the table headings are using a dash, not a negative sign.
Return loss- dB

# Look at the equation and you will understand. When the ratio is
less
# than one, the log is negative.

But the ratio is never less than one for passive devices.

If all the power forward is reflected, then the power ratio is 1
to 1.
That's 0 dB return loss from the equation.

Return loss is a positive number.

I'm not so sure. It depends on how you define it. What if half the
power is reflected? The equation above and *many* other sources say
that is 10 log(0.5/1) = -3 dB. A few sources take exception to
this and
say it is 10 log(1/0.5) = 3 dB.

At this point I dunno.


Rickman, you are correct. The return loss is calculated as return
value
(the variable) divided by the output value (the constant).

I haven't seen any reliable sources which say otherwise.

I haven't seen any reliable sources that say either. Have you?



Not for 40 years or so. But then I haven't looked for one since
college. I've just dealt with RF engineers, who have used the same
terminology.

They use negative numbers for loss to figure the gain of the entire
system. It doesn't matter which direction the loss is in; loss is a
negative number (and gain is a positive number).

A loss is only negative if it is being thought of as gain. If it's a
loss, its value is positive.


Physicists and engineers do not mix gain and loss. Gain is always shown
as a positive number and loss as a negative number.

For instance - a system shows a gain and loss of +3, +5, +2, +1. What
is the total gain or loss of the system?

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

rickman September 29th 15 01:08 AM

Parallel coax
 
On 9/28/2015 7:52 PM, Jerry Stuckle wrote:
On 9/28/2015 5:17 PM, rickman wrote:
On 9/28/2015 4:33 PM, Jerry Stuckle wrote:
On 9/28/2015 4:15 PM, rickman wrote:
On 9/28/2015 4:02 PM, Jerry Stuckle wrote:
On 9/28/2015 3:02 PM, rickman wrote:
On 9/28/2015 2:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:
On 9/28/2015 12:54 PM, Jerry Stuckle wrote:
On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


"John S" wrote in message ...

On 9/27/2015 1:20 PM, Wayne wrote:


"rickman" wrote in message
...

On 9/27/2015 10:41 AM, kg7fu wrote:

Matching the antenna won't make the Return Loss go away
but it
will
make
the transmitter happy.

Can you explain this? I thought matching the antenna would
*exactly*
make the return loss go away because it would eliminate the
mismatch.

Not wanting to put words in his mouth....
I read that to mean that the high SWR between the ATU and the
antenna
would remain, but the transmitter would be happy with the
SWR on
the
transmitter/ATU coax.


# Rick is correct. If the antenna (load) is matched to the
line,
there is
# no return loss, hence no SWR. The ATU will be adjusted
(hopefully) to
# make the transmitter operate properly with the impedance as
seen at
the
# transmitter end of the line.

# Yes, the SWR due to mismatch of the antenna (load) and line
will
remain.
# Even if the real part of your load impedance is matched
to the
line, you
# will still have a high SWR if the reactance remains.

# Does this make sense?

Yes. That's what I was trying to say using SWR instead of
return
loss.
Return loss numbers get bigger with lower SWR.
For example: SWR 1:1 = infinite return loss.


Incorrect. Return loss increases with an increased SWR. An
SWR
of 1:1
has no return loss because there is no returned signal to lose.
100% of
the signal is radiated.

From LUNA web site regarding optical measurements which
should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


I didn't because I thought it was obvious. But I guess not to you.

Return loss is calculated with logs. Logs of values 1 are
negative.
And -10db is smaller than -5 db.

As the SWR approaches 1:1, the reflected power approaches 0, and
the
returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
infinity. At the same point, the returned power measured in watts
is 0.

I believe that is exactly what I said in the portions of my post
which
you trimmed. These values for RF return loss match exactly the
equation
which you are saying is not used in RF. So which is it, the return
loss
table is correct with negative values of return loss or the
equation I
posted is incorrect even though it gives the values in the table?


You said return loss increases with lower SWR. It does not.

Are you being pedantic that -1 dB is not lower than -10 dB? It is not
numerically lower in value, but is lower in magnitude and it is a
lower
loss. I even referred to the magnitude in my post. But then that was
the same part you snipped which I referred to earlier.

"It shows a higher return loss (assuming you mean magnitude since the
values are all negative) for lower VSWR."


No, I am not being pedantic. -1 is greater than -10. The fact it is a
negative number makes all the difference - as any engineer who knows
what he's talking about will tell you.

Except that I clearly stated I was referring to the magnitude.


Magnitude without direction is meaningless.


Lol. There is only one direction for return loss.


Yes - the loss is a negative gain - hence the use of negative db values.

You can't just give a magnitude. You need to specify the direction,
also. You seem to have a very hard time understanding such a simple
concept - one that was taught in freshman physics.


Ok Jerry. You just said the value can only be negative, so if the
magnitude is specified it is a complete specification.

I'll toss in the towel as you will never stop arguing such a silly point.

--

Rick

rickman September 29th 15 01:09 AM

Parallel coax
 
On 9/28/2015 7:55 PM, Jerry Stuckle wrote:
On 9/28/2015 5:18 PM, rickman wrote:
On 9/28/2015 4:34 PM, Jerry Stuckle wrote:
On 9/28/2015 4:14 PM, rickman wrote:
On 9/28/2015 4:07 PM, Jerry Stuckle wrote:
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


# I didn't because I thought it was obvious. But I guess not to you.

# Return loss is calculated with logs. Logs of values 1 are
negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and
the
# returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
# infinity. At the same point, the returned power measured in watts
is 0.

Return loss is a positive number for passive networks. The equation
has
(P out/P reflected). P out will never be less that P reflected, and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is the
# constant with varying load; P reflected is the variable. The
ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of decibels.
The standard output for the return loss is a positive value, so a
large
return loss value actually means that the power in the reflected
wave is
small compared to the power in the incident wave and indicates a
better
impedance match. The return loss can be calculated from the reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?

I provided the IEEE paper cited by wikipedia. Anyone care to pay for
it? IEEE is seldom free. Who else will you accept?


I'm not interested. I know what it says. Guess I should have kept up
my IEEE membership, but it just wasn't worth it.


So share with the rest of us. What does it say?


Exactly what your table showed. But you mentioned the resource, not me.
You pay for it or you've just once again you're full of it.


You said you *know* what the IEEE article says. Why not share with us?

--

Rick

Jerry Stuckle September 29th 15 01:56 AM

Parallel coax
 
On 9/28/2015 8:09 PM, rickman wrote:
On 9/28/2015 7:55 PM, Jerry Stuckle wrote:
On 9/28/2015 5:18 PM, rickman wrote:
On 9/28/2015 4:34 PM, Jerry Stuckle wrote:
On 9/28/2015 4:14 PM, rickman wrote:
On 9/28/2015 4:07 PM, Jerry Stuckle wrote:
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message
...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which
should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


# I didn't because I thought it was obvious. But I guess not to
you.

# Return loss is calculated with logs. Logs of values 1 are
negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and
the
# returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
# infinity. At the same point, the returned power measured in
watts
is 0.

Return loss is a positive number for passive networks. The
equation
has
(P out/P reflected). P out will never be less that P reflected,
and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is
the
# constant with varying load; P reflected is the variable. The
ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for
passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of
decibels.
The standard output for the return loss is a positive value, so a
large
return loss value actually means that the power in the reflected
wave is
small compared to the power in the incident wave and indicates a
better
impedance match. The return loss can be calculated from the
reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?

I provided the IEEE paper cited by wikipedia. Anyone care to pay for
it? IEEE is seldom free. Who else will you accept?


I'm not interested. I know what it says. Guess I should have kept up
my IEEE membership, but it just wasn't worth it.

So share with the rest of us. What does it say?


Exactly what your table showed. But you mentioned the resource, not me.
You pay for it or you've just once again you're full of it.


You said you *know* what the IEEE article says. Why not share with us?


You want it - you pay for it. Or once again you prove you're full of it.

No, I have not read the article. But I understand the physics and math
behind it - unlike you. Someone who thinks magnitude without vector
(direction) is valid! ROFLMAO!

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

rickman September 29th 15 05:55 AM

Parallel coax
 
On 9/28/2015 8:56 PM, Jerry Stuckle wrote:
On 9/28/2015 8:09 PM, rickman wrote:
On 9/28/2015 7:55 PM, Jerry Stuckle wrote:
On 9/28/2015 5:18 PM, rickman wrote:
On 9/28/2015 4:34 PM, Jerry Stuckle wrote:
On 9/28/2015 4:14 PM, rickman wrote:
On 9/28/2015 4:07 PM, Jerry Stuckle wrote:
On 9/28/2015 3:22 PM, Wayne wrote:


"Jerry Stuckle" wrote in message ...

On 9/28/2015 2:27 PM, Wayne wrote:


"Jerry Stuckle" wrote in message
...

On 9/28/2015 12:47 PM, rickman wrote:
On 9/28/2015 10:38 AM, Jerry Stuckle wrote:
On 9/28/2015 12:03 AM, rickman wrote:
On 9/27/2015 10:39 PM, Jerry Stuckle wrote:
On 9/27/2015 9:46 PM, Wayne wrote:


From LUNA web site regarding optical measurements which
should
be no
different from RF...


It "shouldn't be" - but optical measurements are handled
differently
than electrical measurements. Fiber Optics have their own way of
measuring loss, reflection and refraction (which doesn't exist in
feedlines).

That's like applying electrician's color codes to electronics.
They
both have color codes - but don't hook the electrician's black
wire to
ground - or the transformer's green wires to safety ground.

I thought you would claim optical was different. That's why I
included
the VSWR vs return loss table link. You didn't comment on
that. :)


# I didn't because I thought it was obvious. But I guess not to
you.

# Return loss is calculated with logs. Logs of values 1 are
negative.
# And -10db is smaller than -5 db.

# As the SWR approaches 1:1, the reflected power approaches 0, and
the
# returned loss approaches NEGATIVE infinity. Note that I said
NEGATIVE
# infinity. At the same point, the returned power measured in
watts
is 0.

Return loss is a positive number for passive networks. The
equation
has
(P out/P reflected). P out will never be less that P reflected,
and
thus return loss will never be negative. (for passive networks)

As the SWR approaches 1:1, the return loss increases in a positive
direction, finally reaching infinity.


# No, return loss is calculated as P reflected / P out. P out is
the
# constant with varying load; P reflected is the variable. The
ratio is
# always less than one, hence the calculation is always negative DB.

# Please point to a reliable source which agrees with you.

I have never heard return loss expressed as a negative for
passive RF
networks.
In fields other than RF I suppose anything is possible.

Here are some references, searching only for RF definitions:

http://www.ab4oj.com/atu/vswr.html

http://www.mogami.com/e/cad/vswr.html

http://www.microwaves101.com/encyclo...swr-calculator

http://www.amphenolrf.com/vswr-conversion-chart/

From wikipedia: https://en.wikipedia.org/wiki/Return_loss
Return loss is the negative of the magnitude of the reflection
coefficient in dB. Since power is proportional to the square of the
voltage, return loss is given by,
(couldn't cut/paste the equation)
Thus, a large positive return loss indicates the reflected power is
small relative to the incident power, which indicates good impedance
match from source to load.

http://www.spectrum-soft.com/news/fall2009/vswr.shtm
The return loss measurement describes the ratio of the power in the
reflected wave to the power in the incident wave in units of
decibels.
The standard output for the return loss is a positive value, so a
large
return loss value actually means that the power in the reflected
wave is
small compared to the power in the incident wave and indicates a
better
impedance match. The return loss can be calculated from the
reflection
coefficient with the equation:





I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I
would call reliable.

How about IEEE, for instance?

I provided the IEEE paper cited by wikipedia. Anyone care to pay for
it? IEEE is seldom free. Who else will you accept?


I'm not interested. I know what it says. Guess I should have kept up
my IEEE membership, but it just wasn't worth it.

So share with the rest of us. What does it say?


Exactly what your table showed. But you mentioned the resource, not me.
You pay for it or you've just once again you're full of it.


You said you *know* what the IEEE article says. Why not share with us?


You want it - you pay for it. Or once again you prove you're full of it.

No, I have not read the article. But I understand the physics and math
behind it - unlike you. Someone who thinks magnitude without vector
(direction) is valid! ROFLMAO!


Ok, so you mispoke when you said, "I know what it says."

You have said repeatedly that the return loss should be calculated by
using the power in as the reference and the reflected power as the thing
being measured which results in a negative log. I am pretty sure the
paper says this is not the correct way to calculate it and many people
are making a mistake doing it this way.

I'll see if I can get my hands on the paper. I'm not going to pay for
it. If I thought it would get you to admit you were mistaken, I'd pay
the $100. But I'm sure you will find a way to berate the authors or
twist their logic and I'm not will to pay $100 for that.

So stand by. Someone may be getting it for me.

--

Rick

John S September 29th 15 08:27 AM

Parallel coax
 
On 9/28/2015 6:54 PM, Jerry Stuckle wrote:

You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.


It increases the amount of loss that is reflected. Hence, return loss.

Please cite a reliable reference that says it does. Even the table Rick
cited shows a negative value for return SWR.


No, the table is correct and does not show negative values for return
loss. What is return SWR?



John S September 29th 15 08:36 AM

Parallel coax
 
On 9/28/2015 6:54 PM, Jerry Stuckle wrote:

You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.

Please cite a reliable reference that says it does.



From the ARRL:

http://www.arrl.org/news/amateur-radio-quiz-a-log-of-dbs

"9) D -- Higher positive values of Return Loss (RL) in dB indicate less
power returning from a load, indicating a lower SWR."



John S September 29th 15 08:45 AM

Parallel coax
 
On 9/28/2015 6:54 PM, Jerry Stuckle wrote:

You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.

Please cite a reliable reference that says it does. Even the table Rick
cited shows a negative value for return SWR.


OH! I see your problem. You think the column heading dashes are minus
signs. They are not. Loss - dB indicates that the column data have the
units of dB, not that they are negative. I usually use Loss (dB) for my
column headings.


Ian Jackson[_2_] September 29th 15 08:47 AM

Parallel coax
 
In message , Jerry Stuckle
writes
On 9/28/2015 7:12 PM, John S wrote:
On 9/28/2015 1:51 PM, Jerry Stuckle wrote:
On 9/28/2015 1:42 PM, rickman wrote:






You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.


Of course it doesn't. No one said it did. It does the opposite, ie a
lower SWR gives less loss on the feeder.

Please cite a reliable reference that says it does. Even the table Rick
cited shows a negative value for return SWR.

What is this 'Return SWR'? I'm not familiar with it.

Do you mean Return Loss Ratio (RLR)? This is a simple, easily
measurable, and meaningful statement of how strong the returning
reflected signal is compared with the outgoing forward signal.

The reflected signal is a weaker version of the forward signal. It's
expressed as a loss, an attenuation, or relatively how much down the
level of the reflection is. You can express this as a numerical ratio -
the reflection coefficient (rho) - or (as often more convenient) rho in
dB.

As others have suggested, what is apparently a negative sign in the
chart is presumably more artistic licence than scientific accuracy. If
you lose $10, you don't say that you lost 'minus $10'. Similarly, when
you lose 10dB of signal, you don't say you lost 'minus 10dB'.
--
Ian

Ian Jackson[_2_] September 29th 15 08:58 AM

Parallel coax
 
In message , Jerry Stuckle
writes
On 9/28/2015 6:21 PM, Ian Jackson wrote:
In message , Jerry Stuckle
writes
On 9/28/2015 3:10 PM, rickman wrote:
On 9/28/2015 2:55 PM, Jerry Stuckle wrote:
On 9/28/2015 2:19 PM, rickman wrote:
On 9/28/2015 2:01 PM, Wayne wrote:


"rickman" wrote in message ...

On 9/28/2015 11:59 AM, Wayne wrote:


"Ian Jackson" wrote in message
...
In message , rickman
writes



Definition of Return Loss

In technical terms, RL is the ratio of the light reflected back
from
a device under test, Pout, to the light launched into that device,
Pin, usually expressed as a negative number in dB.

RL = 10 log10(Pout/Pin)

Here is a link for a table of return loss and VSWR....

http://www.jampro.com/uploads/tech_d.../VSWRChart.pdf

It shows a higher return loss (assuming you mean magnitude
since the
values are all negative) for lower VSWR.


I'm surprised to see negative quantities. For 50 years, I've always
understood the Return Loss Ratio (RLR) to be exactly what it
says on
the tin, ie the ratio (in dB) of the LOSS (the attenuation) of the
reflected signal wrt the incident signal. This is a +ve quantity.
Things are already sufficiently confusing without having to start
thinking in unnecessary -ve figures!

I think the table headings are using a dash, not a negative sign.
Return loss- dB

# Look at the equation and you will understand. When the ratio is
less
# than one, the log is negative.

But the ratio is never less than one for passive devices.

If all the power forward is reflected, then the power ratio is 1
to 1.
That's 0 dB return loss from the equation.

Return loss is a positive number.

I'm not so sure. It depends on how you define it. What if half the
power is reflected? The equation above and *many* other sources say
that is 10 log(0.5/1) = -3 dB. A few sources take exception to
this and
say it is 10 log(1/0.5) = 3 dB.

At this point I dunno.


Rickman, you are correct. The return loss is calculated as return
value
(the variable) divided by the output value (the constant).

I haven't seen any reliable sources which say otherwise.

I haven't seen any reliable sources that say either. Have you?



Not for 40 years or so. But then I haven't looked for one since
college. I've just dealt with RF engineers, who have used the same
terminology.

They use negative numbers for loss to figure the gain of the entire
system. It doesn't matter which direction the loss is in; loss is a
negative number (and gain is a positive number).

A loss is only negative if it is being thought of as gain. If it's a
loss, its value is positive.


Physicists and engineers do not mix gain and loss. Gain is always shown
as a positive number and loss as a negative number.


Physicists and engineers don't get themselves into situations where
'gain' and 'loss' are used ambiguously. Unfortunately, the same cannot
be said of certain radio amateurs.

For instance - a system shows a gain and loss of +3, +5, +2, +1. What
is the total gain or loss of the system?

A physicists or engineer would never ask such a meaningless question.
--
Ian

John S September 29th 15 08:58 AM

Parallel coax
 
On 9/28/2015 6:54 PM, Jerry Stuckle wrote:

You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.

Please cite a reliable reference that says it does. Even the table Rick
cited shows a negative value for return SWR.


Create your own chart that shows you are incorrect:

http://www.jampro.com/uploads/tech_calc/vswr.htm

Jerry Stuckle September 29th 15 02:14 PM

Parallel coax
 
On 9/29/2015 3:27 AM, John S wrote:
On 9/28/2015 6:54 PM, Jerry Stuckle wrote:

You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.


It increases the amount of loss that is reflected. Hence, return loss.

Please cite a reliable reference that says it does. Even the table Rick
cited shows a negative value for return SWR.


No, the table is correct and does not show negative values for return
loss. What is return SWR?



No, a 1:1 SWR has no reflection, therefore no reflective loss.

And yes, it does show negative values. Don't you see the '-' sign?

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================

Jerry Stuckle September 29th 15 02:18 PM

Parallel coax
 
On 9/29/2015 3:36 AM, John S wrote:
On 9/28/2015 6:54 PM, Jerry Stuckle wrote:

You said return loss increases with lower SWR. It does not.


It does.


Sorry, a lower SWR does not increase the amount of loss.

Please cite a reliable reference that says it does.



From the ARRL:

http://www.arrl.org/news/amateur-radio-quiz-a-log-of-dbs

"9) D -- Higher positive values of Return Loss (RL) in dB indicate less
power returning from a load, indicating a lower SWR."



OK, I'll have to take that up with N0AX. My university professors and
the IEEE disagree with him from an engineering view.

However, hams often try to make things easier - and not always correctly.

--
==================
Remove the "x" from my email address
Jerry, AI0K

==================


All times are GMT +1. The time now is 09:58 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
RadioBanter.com