Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
Complex Z0 - Power : A Proof
[Please use fixed-space font] It seems that a proof has been carried out for the validation of the so-called Principle of Conservation of Energy "P.C.E" in any point of a Transmission Line with a Complex characteristic impedance, which is terminated at any passive load. But, I have to make an appeal for some patience... [1] --- Let the Characteristic Impedance Zo = Ro + j Xo and the Gamma g = a + j b [2] --- At the Terminal Load Zt = Rt + j Xt a "Reflection Coefficient" is defined by pt = (Zt - Zo)/(Zt + Zo) pt = |pt|.Exp(j tt) On the load the Average Power "Wt" is expressed as[*] Wt = k.T where k 0 is a constant and T = 1 - |pt|^2 + j (Xo/Ro)(pt - pt*) [3] --- With direct substitution of Zt and Zo in the last one and after _enough_but_straightforward_ algebraic manipulation, which it is impossible to be reproduced here, we have for the Average Power at the Terminal Load [Wt = 0] = [T = 0] = [Rt = 0] This is an important partial result which proves that P.C.E. is valid on any passive terminal load of a Transmission Line with complex Zo. [4] --- Now, at any other point on the Transmission Line at a distance d from the Terminal Load, a "Reflection Coefficient" is introduced from pd = pt.Exp(-2.g.d)[*] and the following are defined Zd = (1 + pd)/( 1 - pd) pd = (Zd - Zo)/(Zd + Zo) pd = |pd|.Exp(j td) and the relation |pd| = |pt|.Exp(-2.a.d) holds between the two Reflection Coefficients [5] --- As in above [2], the Average Power at any point at distance d is Wd = k.D where D = 1 - |pd|^2 + j (Xo/Ro)(pd - pd*) = D = 1 - Exp(-4.a.d).|pt|^2 - 2.(Xo/Ro).Exp(-2.a.d).|pt|.Sin(td) Obviously, P.C.E. holds, if and only if D = 0 or equivalently 2.(Xo/Ro).Exp(-2.a.d).|pt|.Sin(td) = 1 - Exp(-4.a.d).|pt|^2 [6] --- But, we have 0 Exp(-4.a.d) = 1 and 0 = |pt|^2 therefore Exp(-4.a.d)|pt|^2 = |pt|^2 = -|pt|^2 = -Exp(-4.a.d)|pt|^2 and finally 1 - |pt|^2 = 1 - Exp(-4.a.d).|pt|^2 Hence, for P.C.E validation, it is sufficient to prove 2(Xo/Ro).Exp(-2.a.d).|pt|.Sin(td) = 1 - |pt|^2 But, in addition, we have for the maximum value of the left part 0 Exp(-2.a.d) = 1 Sin(td) = 1 (Xo/Ro) = |Xo|/Ro and therefore the left part has the relation, to its maximum value 2.(Xo/Ro).Exp(-2.a.d).|pt|.Sin(td) = 2.(|Xo|/Ro).|pt| [7] --- Consequently, it is sufficient to prove 2.(|Xo|/Ro).|pt| = 1 - |pt|^2 or |pt|^2 + 2.(|X0|/R0).|pt| -1 = 0 (Note: (Probably, (this is possible (with a direct substitution, (as in [3] This is a 2nd degree polynomial in |pt| with roots: |pt|- = -|Xo|/Ro - Sqrt(|Xo|^2/Ro^2 + 1) 0 |pt|+ = -|Xo|/Ro + Sqrt(|Xo|^2/Ro^2 + 1) 0 After that, the P.C.E. is valid at any point if and only if the "Reflection Coefficient" at the terminal load is lower than or equal to the positive root 0 = |pt| = |pt|+ But |Xo|/Ro = Tan(|to|) where tO is the argument of Zo, so |pt|+ = -Tan(|to|) + Sqrt(Tan(|to|)^2 + 1) After some trigonometric manipulation the identity can be proved -Tan(|t0|) + Sqrt(Tan(|to|)^2 + 1) = = Sqrt[(1 + Sin(|to|)/(1 - Sin(|to|)] Therefore, the P.C.E. is valid, at any point, if and only if the "Reflection Coefficient" at the Terminal Load is |pt| = Sqrt[(1 + Sin(|to|)/(1 - Sin(|to|)] But this is a relation, which has been already proved in the Thread "Complex Z0 [Corrected]" QED I hope, but, as any other time d;^) your comments are welcomed! Sincerely, pez SV7BAX [*] --- e.g. Chipman, 1968, p.138 |
#2
![]() |
|||
|
|||
![]()
The Missing Step
[Please use fixed-space font] For any patient reader, the Missing Step of the validation of the Principle of Conservation of Energy at the Terminal Load, is now possible to be reproduced here... [1] --- Given a Transmission Line with Zo = Ro + j Xo Yo = 1/Zo the following are defined Vi = V1.Exp[-g.l] Vr = V2.Exp[+g.l] V = Vi + Vr p = Vr/Vi V = Vi.(1 + p) Ii = I1.Exp[-g.l] Ir = I2.Exp[+g.l] I = Ii + Ir I1 = Yo.V1 I2 =-Yo.V2 Ii = Yo.Vi Ir =-Yo.Vr I = Yo.[Vi - Vr] I = Yo.Vi.(1 - p) Z = V/I Z = Zo.(1 + p)/(1 - p) p =(Z - Zo)/(Z + Zo) [2] --- At any point the Complex Power is given by P = V.I* = Vi.(1 + p).Yo*.Vi*.(1 - p*) where Yo*= Yo.Yo*/Yo = Zo/|Zo|^2 therefore P =(|Vi/Zo|^2).Zo.(1 + p).(1 - p*) P =(|Vi/Zo|^2).Zo.(1 - p* + p -|p|^2) P =(|Vi/Zo|^2).(Ro + j Xo).[(1 -|p|^2) + (p - p*)] P =(|Vi/Zo|^2).Ro.[1 + j (Xo/Ro)].[(1 -|p|^2) + (p - p*)] and since Vi = V1.Exp[-2.a.l].Exp[-j 2.b.l] |Vi|^2 = (|V1|^2).Exp[-2.a.l] we can define k = (|Vi/Zo|^2).Ro = (|V1/Zo|^2).Ro.Exp[-2.a.l] 0 The Complex Power becomes P = k.[1 + j (Xo/Ro)].[(1 -|p|^2) + (p - p*)] where p - p* = j 2 Im{p} therefore P = k.[1 + j (Xo/Ro)].[(1 -|p|^2) + j 2 Im{p}] P = k.{[(1 -|p|^2) - 2.(Xo/Ro).Im{p}] + j [(Xo/Ro).(1 -|p|^2) + 2 Im{p}] But P = PR + j PI PR = k.{[(1 -|p|^2) - 2.(Xo/Ro).Im{p}] and -2.Im{p} = j (p - p*) Finally, at any point, the Average Power is PR = k.[(1 -|p|^2) + j (Xo/Ro).(p - p*)] [3] --- At any point at a distance l from the input 0 = l = L p =(V2/V1).Exp[2.g.l] At the Terminal Load l = L pt =(V2/V1).Exp[2.g.L] Z = Zt pt =(Zt - Zo)/(Zt + Zo) hence Wt = PR(p=pt) Wt = k.T T = 1 -|pt|^2 + j (Xo/Ro).(pt - pt*) But we have |pt|^2 =(|Zt - Zo|^2)/(|Zt + Zo|^2) pt - pt* = (Zt - Zo)/(Zt + Zo) - (Zt* - Zo*)/(Zt* + Zo*) = = [(Zt - Zo).(Zt* + Zo*) - (Zt + Zo).(Zt* - Zo*)]/(|Zt + Zo|^2) Therefore T.(|Zt + Zo|^2).Ro = =(|Zt + Zo|^2).Ro - (|Zt - Zo|^2).Ro + j Xo.[(Zt - Zo).(Zt* + Zo*) - (Zt + Zo).(Zt* - Zo*)] = Ro.[(Rt + Ro)^2 + (Xt + Xo)^2 - (Rt - Ro)^2 - (Xt - Xo)^2] + + j Xo.[Zt.Zt* + Zt.Zo* - Zo.Zt* - Zo.Zo* - Zt.Zt* + Zt.Zo* - Zo.Zt* + Zo.Zo*) = = Ro.[Rt^2 + Ro^2 + 2.Rt.Ro + Xt^2 + Xo^2 + 2.Xt.Xo - -Rt^2 - Ro^2 + 2.Rt.Ro - Xt^2 - Xo^2 + 2.Xt.Xo] +j 2.Xo.(Zt.Zo* - Zo.Zt*) = 4.Ro.[Rt.Ro + Xt.Xo] + j 2.Xo.(Zt.Zo* - Zo.Zt*) But j 2.Xo.(Zt.Zo* - Zo.Zt*) = j 2.Xo.[(Rt + j Xt).(Ro - j Xo) - (Ro + j Xo)(Rt - j Xt)} = j 2.Xo.[Rt.Ro - j Rt.Xo + j Xt.Ro + Xt.Xo - Ro.Rt + j Ro.Xt -j Xo.Rt - Xo.Xt]= j 2.Xo.[ j {-Rt.Xo + Xt.Ro + Ro.Xt - Xo.Rt}]= -2.Xo.[-Rt.Xo + Xt.Ro + Ro.Xt - Xo.Rt] Hence T.(|Zt + Zo|^2).Ro = 4.Ro^2.Rt + 4.Ro.Xt.Xo + 2.Rt.Xo^2 - 2.Xo.Xt.Ro - 2.Xo.Ro.Xt + 2.Xo^2.Rt = 4.Ro^2.Rt + 4.Xo^2.Rt = 4.(|Zo|^2).Rt Finally we take T.(|Zt + Zo|^2).Ro = 4.(|Zo|^2).Rt from which [Wt = 0 ] = [T = 0] = [Rt = 0] QED, I hope. And as usually d;^) "Comments are welcomed"... Sincerely, pez SV7BAX |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Complex line Z0: A numerical example | Antenna | |||
Complex Z0 [Corrected] | Antenna | |||
Derivation of the Reflection Coefficient? | Antenna | |||
The Cecilian Gambit, a variation on the Galilean Defense revisited | Antenna |