LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #10   Report Post  
Old June 6th 06, 09:50 PM posted to rec.radio.amateur.antenna
chuck
 
Posts: n/a
Default H FIELD ANTENNAS?

Roy Lewallen wrote:
Bill Ogden wrote:
OK, let me display my ignorance once again.

There are many construction articles about ferrite-core antennas for
the low
bands. (Not to mention all the ferrite-core antennas in AM
receivers.) Are
these not H-field antennas, to a large extent?


Only very locally, and only to a limited extent.

When a signal originates far from an antenna, the response to E and H
fields is in the ratio of about 377 ohms, the impedance of free space.
This is true for *all antennas*. In other words, all antennas have the
same relative E and H response to signals originating far away.

Very close to a small loop antenna, response is greater to an H field
than E field. It does respond to both, however, as all antennas must. As
you get farther away from the antenna, the response to the H field
decreases in relation to the E field response. At around an eighth
wavelength distance from the antenna, the response to E and H fields are
about the same as for a distant source. Beyond about an eighth
wavelength, the response to the H field is actually *less* than the
response to an E field compared to a source at a great distance. The
ratio of E to H field responses then decreases to the distant value as
you get farther from the antenna.

In summary, the antenna responds more strongly to the H field if the
source is within about an eighth of a wavelength from the antenna.
Beyond that, it actually responds more strongly to the E field relative
to the H field than a short dipole or many other antennas -- you could
more properly call it an "E-field antenna" in its response to signals
beyond about an eighth wavelength. The difference in relative E and H
field response among all antennas becomes negligible at great distances;
for antennas which are small in terms of wavelength, the difference
becomes negligible beyond about a wavelength.

Now, suppose you could make a magic antenna which would respond only to
the H field of a signal originating at any distance from the antenna
(which is impossible). What advantage would it have over a real antenna?
Remember that the E/H ratio of any signal originating very far away is
377 ohms, regardless of what kind of antenna or source it came from.

Roy Lewallen, W7EL


There seems to be a number of commercial antennas
described as H-field antennas intended for LORAN
application. Most claim improved immunity to
precipitation static. Is there a theoretical basis
for such claims?

Thanks.

Chuck

----== Posted via Newsfeeds.Com - Unlimited-Unrestricted-Secure Usenet News==----
http://www.newsfeeds.com The #1 Newsgroup Service in the World! 120,000+ Newsgroups
----= East and West-Coast Server Farms - Total Privacy via Encryption =----


 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Passive Repeater Bryan Martin Antenna 13 February 10th 06 02:03 PM
Is magnetic field affected by metal conductor? [email protected] Homebrew 10 December 15th 05 02:38 AM
F/A New Motorola VHF portable antennas (Motorola Branded!!) Andy Swap 0 May 18th 04 10:14 PM
FA Motorola VHF rubber duck Antennas $4.99 ea. Dealer cost $8.70 List $11.80 Andy Swap 0 May 17th 04 01:46 PM
How was antenna formula for uV/Meter Derived? Roy Lewallen Antenna 21 July 31st 03 09:04 AM


All times are GMT +1. The time now is 12:17 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017