LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #1   Report Post  
Old September 23rd 03, 11:50 PM
phil hunt
 
Posts: n/a
Default battlefield Internet (was: Stryker/C-130 Pics)

(I'm not an electronic engineer, so I've cross-posted this to some
newsgroups which might be able to give informed comment on a number
of points.)

On 23 Sep 2003 05:51:41 -0700, Kevin Brooks wrote:
(phil hunt) wrote in message ...
[regarding battlefield internet]
The signal must be such that the extended receiver can hear it. So
others can too, in principle. (Though detecting the signal and
knowing where it's from aren't the same thing). I'm not a radio
engineer but I can imagine a few ways how direction-finding might
work; for example place two (or 3) detectors a few meters apart
and calculate the time delay between each one receiving the signal.


No. Paul is correct, DF'ing a "frequency agile" (or "hopping")
transmitter is no easy task. For example, the standard US SINCGARS
radio changes frequencies about one hundred times per *second*,


Bear in mind that I'm talking about automated electronic gear here,
not manual intervention. Electronics works in time spans a lot
quicker than 10 ms.

over a
pretty wide band of freq's (this is why synchronization of the radios
on a time basis is critical to succesful operation of the net).


So the frequency changes are pre-determined on a time basis?

If there is a radio receiver, is it better able to detect/deceive a
signal whgen it knows the frequency in advance? Or can it "sniff"
for lots of frequencies at a time and pick out what looks
interesting?

If two receivers, placed say 10 m aparet, both pick up a signal, how
accurately can the time difference between the repetion of both
signals be calculated? Light moves 30 cm in 1 ns, so if time
differences can be calculated to an accuracy of 0.1 ns, then
direction could be resolved to an accuracy of 3 cm/10 m ~= 3 mrad.

Alternately, would something like a pinhole camera work? What I mean
here is: imagine a cubic metal box, 1 m on its side, with a vertical
slit, about 1 cm wide down one of its vertical faces. On the
opposite face, there are detectors for detecting radio waves. If the
elevctromatnetic ratiation coming into the box can only go in
through the slit, and goes in a straight line, then knowing which
detectors are lit up would allow someone to tell where the
radiation was coming from. It may be that, depending on the
wavelength, the incoming radiation would be diffracted by the slit
and would get spread all over the detectors. If this is the case,
perehaps multiple slits could be used, and the diffraction pattern
would differ dependent on the angle with which the radiation strikes
the slitted face? (because the radation at each slit would be
out-of-phase with the radiation at other slits). Has anything like
this been tried?

It is
hard enough for the average "rest of the world" intel unit to DF an
old fashioned non-hopping transmitter if the radio operator uses good
RTO procedures--trying to pluck enough of these random
fractional-second bursts out of the ether to determine a direction is
more difficult by a few orders of magnitude.


What methods are used to do DF?

--
"It's easier to find people online who openly support the KKK than
people who openly support the RIAA" -- comment on Wikipedia


 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Amateur Radio Newsline™ Report 1419 ­ October 22, 2004 Radionews Dx 0 October 22nd 04 08:00 PM
F6FBB to Internet email? N4RPD Digital 10 June 22nd 04 04:08 PM
F6FBB to Internet email? N4RPD Digital 0 April 9th 04 04:01 AM
Internet trials and the European EMC directive Thierry Equipment 0 October 3rd 03 12:45 AM
Internet trials and the European EMC directive Thierry Equipment 0 October 3rd 03 12:45 AM


All times are GMT +1. The time now is 11:53 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017