Home |
Search |
Today's Posts |
#4
![]() |
|||
|
|||
![]()
Paul Burridge wrote...
I need to wind 180nH inductor for a parallel tuned circuit I'm building, since the 180nH factory-made chokes I have don't look up to the job power-handling wise. This coil needs to handle about 90mA p-p / 500mW maximum dissipation sine current and I've allowed 3 ohms for series resistance. Can anyone give me some steer on dimensions, number of turns, core type and so on? Thanks, As John has said, that's a very low inductance that should not present any problems at such a low power level. But perhaps for a more detailed answer you can tell us the frequencies your coil will experience. At high frequencies skin and proximity effects dominate, and these can be evaluated with an Rac/Rdc ratio. If a ferrite is used its high-frequency core loss can also be modeled as an inductor resistance. Do you have any special size constraints? Unless you really need a miniature size, an air core may be best for 180nH. You can use the Wheeler equation to experiment with different coil designs. I'll add some new grist for the mill, with a copy of a portion of a posting I made 28 Dec 1997, about air-coil inductance equations. ------------------------------------------------------------------- Throughout the discussion we'll use the same dimensional system, based on the drawing below. Here and in the 14 formulas below, N = turns, a = mean radius, b = length, and c = winding thickness, and all are in inches, unless otherwise stated. length |------ b --------| --- ,-----------------, c | cross section | ------------ a = winding mean radius --- '-----------------' a | __________________________ | axis D = 2a ,-----------------, | | cross section | -------- '------------\----' \ solenoid coil layout N turns -------- [ snip five formulas and discussion ] To simplify our lives, Wheeler empirically derived his popular single-layer solenoid equation, using Nagaoka's equation and tables. Wheeler's equation is shown below in two different ways. a N^2 a^2 N^2 / 10 b (6) L = ---------- = -------------- uH / inch 9 + 10 b/a 1 + 0.9 a/b Wheeler says this equation is accurate to about 1% for long coils, or any coils with (b/a 0.8). [Confirmed with extensive measurements I made and posted on s.e.d.] It's easy to solve this equation for N. A simple re-arrangement adds the concept of winding pitch. This can be very useful, in part because a low-winding-height multilayer coil can be treated as a single-layer coil with a higher winding pitch. a^2 p N 1 (7) L = -------- * ---------------- uH / inch 10 1 + 0.9 a p / N Here p is my turn-density pitch parameter, in turns/inch. Incidentally, this makes clear that for long coils, once you pick a coil-winding pitch, the inductance scales by N, rather than by N^2. Of course, the length scales as well. Now solving for N isn't as easy. I get, 10 b (8) N =~ ----- ( 1 + 9 a^3 p^2 / 100 L ) turns p a^2 Alan Fowler pointed out a version of Wheeler's equation, claimed more accurate, in F. Langford-Smith's "The Radiotron Designer's Handbook," 1942. In the 3rd edition only, the work of Esnault-Pelterie is detailed, a Frenchman who followed the "des savants japonais" (i.e. Nagaoaka) for his derivation of a simple Wheeler-like formula with a claimed accuracy of 0.1% for values of diameter/length between 0.2 and 1.5. Rearranging, a^2 N^2 / 9.972 b (9) L = -------------------- uH / inch 0.9949 + 0.9144 (a/b) [ snip more formulas and stuff ] ------------------------------------------------------------------- OK, there you have a small panaply of equation forms to select from. (7) is easier to use than it appears at first glance. Let's design a coil for you. We'll pick wire size #22, which has a diameter of 0.020 inches, prompting us to pick a winding-spacing of 0.04 inches, or a 25 turns/in pitch. Inspired by a small art brush in my pencil cup, we'll pick a coil diameter of 0.2", so equation (7) reduces to .. 0.01 25 N 1 .. L = --------- * ------------------ uH / inch .. 10 1 + 0.9 0.1 25 / N .. .. 1 .. = 0.025" N * ------------ uH / in .. 1 + 2.25/N This formula is more simple than it appears, because the second term approaches unity for coils of more than 10 - 20 turns. The first term says a 180nH coil requires about 180/25 = 7 turns, so we'll try N = 9, and get L = 225nH * 0.8 = 180nH, right on the money. That's a 9-turn coil 0.2" in diameter and 0.36" long. It uses less than six inches of wire, has a DC resistance of about 0.008 ohms, and can handle very high DC currents. Plugging our coil into equation (6) as a test, we have a = 0.1" and b = 0.36" and N = 9, so we get L = 8.1 / (9 + 36) = 0.180 uH, bingo. Thanks, - Win whill_at_picovolt-dot-com |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Coils or specifications needed for Heathkit GD-1B Grid Dip Meter. | Equipment | |||
Coils or specifications needed for Heathkit GD-1B Grid Dip Meter. | Equipment | |||
Coils or specifications needed for Heathkit GD-1B Grid Dip Meter. | Equipment | |||
National SW-3 coil winding data | Boatanchors | |||
phasing coils | Antenna |