View Single Post
  #14   Report Post  
Old October 13th 04, 01:10 AM
 
Posts: n/a
Default

Nice job Robert, I really liked it
Art
"Robert Monsen" wrote in message
news:6gKad.230613$D%.163996@attbi_s51...
Alan Horowitz wrote:
when a current just starts flowing into a RL or RC circuit, how does
the voltage "know" that it should be increasing exactly 63% during
each time-constant period?

And whence the number 63%?


Suppose you are trying to fill up a box with balls. However, for some
strange reason, you've decided that each time you throw in balls, you'll
throw in 1/2 of the balls that will fit in the remaining space.

At the first second, you have 1/2 the balls. Next second, you'll have
that plus 1/2 of the remaining space, which is 1/2 + 1/4 = 3/4. The
third second, you'll have that plus 1/2 the remaining space, ie, 1/2 +
1/4 + 1/8 = 7/8...

So, the number of balls at any time t will be:

B(t) = 1 - (1/2)^t

Thus, after 3 seconds, there will be B(3) = 1 - (1/2)^3 = 1 - 1/8 = 7/8,
just like above.

Now, apply that same reasoning, only instead of using the ratio 1/2, use
the ratio 1/e (since we are applying arbitrary rules)

Then

B(t) = 1 - (1/e)^t

After the first second, you'll have

B(1) = 1 - (1/e)^1 = 1 - 1/e = 0.632 (that is, 63%)

Strange coincidence, isn't it? It happens because when you are charging
a capacitor through a resistor, you are throwing balls, in the form of
charges, into a box (the capacitor), and the number of charges you throw
at any given time (the current) depends on how many charges are already
on the capacitor (the voltage).

Each step of the formula above is one time constant, RC. By dividing out
the RC, you can get the answer given seconds, ie

B(t) = 1 - (1/e)^(t/RC) = 1 - e^(-t/RC)

Where B is the percentage 'filled' the capacitor is (ie, what percentage
it is of the input voltage).

Why is 1/e used instead of 1/2? That has to do with the fact that we
must have a continuous solution, not a solution based on ratios of
existing values; the rate of change of the current (ie, how many balls
we throw in per unit time) is proportional to the voltage remaining,
which is continuously changing. Using 1/e instead of 1/2 allows us to
generalize to this, in the same way as the compound interest formula
allows us to compute 'continuously compounding' interest.

--
Regards,
Robert Monsen

"Your Highness, I have no need of this hypothesis."
- Pierre Laplace (1749-1827), to Napoleon,
on why his works on celestial mechanics make no mention of God.