View Single Post
  #59   Report Post  
Old December 2nd 04, 12:28 AM
Roy Lewallen
 
Posts: n/a
Default

You really don't know?

The power into the input end of the transmission line is 50 watts.
(Surely you can subtract the circulator resistor power from the source
power to find the power entering the transmission line. Can't you?)

The power exiting the load end of the feedline is 25 watts.

Therefore the transmission line loss is 25 watts.

It does seem that you've gotten yourself confused by your bouncing waves
of average power.

Roy Lewallen, W7EL

Cecil Moore wrote:
Roy Lewallen wrote:

Line loss itself is a comparison of two powers, those entering and
leaving the line. The line loss in watts is the power entering the
line at the input end minus the power leaving the line at the output end.



Here's an example: The source is a signal generator equipped with a
circulator-resistor that dissipates all reflected power.

100w SGCR--------------feedline------------------mismatched load

The signal generator is sourcing 100 watts. The load is dissipating
25 watts. The circulator resistor is dissipating 50 watts. The
feedline is dissipating 25 watts. What is the feedline loss in dB?

Is that 25 watts lost from the signal generator output power of
100 watts or lost from the NET power available which is 50 watts?
--
73, Cecil http://www.qsl.net/w5dxp