*Chuckle* Yes, they're nearly circular for close spacings (1/8 and 1/16
wavelength), but those aren't "circular patterns". The antenna isn't at
the center of the circle -- it's on the circumference(*). I hope you're
not seriously presenting this as evidence that the gain can be zero dBi.
The patterns and gains are, or should be, identical to those of half of
a W8JK array with twice the spacing. For example, the pattern and gain
of a dipole 1/8 wavelength above a perfect reflector is exactly the same
as half the pattern of a W8JK array made of two of those dipoles spaced
1/4 wavelength. And those are far from an isotropic pattern.
(*) The patterns in the book also are circular because of the scale
factor which was chosen. If some other scale factor were chosen, they
wouldn't be circular. A truly circular pattern (one with the antenna at
the center) is circular regardless of the scale. You can illustrate this
with the EZNEC demo or standard program. Open the dipole1.EZ example
file and click FF Plot to generate a 2D pattern. Notice that the two
lobes are roughly circular in shape (with the antenna at the
circumference, as in Kraus' diagrams). Leaving the 2D plot on the
screen, in the main window Options menu, select 2D Plot Scale and choose
Linear dB. Note how the shape of the two lobes changes. You can get a
wide variety of shapes by changing the scale -- this technique is very
useful to antenna manufacturers to make their beam lobes look extra
narrow. In the main window, change the Plot Type to Elevation. Due to
the orientation of the antenna, you'll now get a plot of the pattern
looking end-on to the dipole. This will be a truly circular pattern.
Click FF Plot to generate the pattern. Change the 2D Plot Scale back to
ARRL Type and note that it remains circular. An isotropic antenna has a
circular pattern like this regardless of the orientation; the 3D plot is
a sphere. And that's the only antenna which can have a free space gain
as low as 0 dBi when there's no loss.
Roy Lewallen, W7EL
Richard Harrison wrote:
Roy Lewallen
, W7EL wrote:
"I don`t have Kraus` 3rd edition (yet), but there`s graph on p 546 of
thye second edition which I suspect is the same as the one Richard is
referring to."
I`m sure that`s it. I have Kraus` 1950 edition of "Antennas" and the
identical groph is on page 327 in it.
If you look at the patterns of a 1/2-wavelength antenna at spacings of
1/4, 1/2, and 1/16 wavelengths spacing from a flat reflector nearby,
they are all nearly circular, indicating little distortion in their
unblocked direction.
Best regards, Richard Harrison, KB5WZI
|