View Single Post
  #164   Report Post  
Old September 2nd 03, 12:54 PM
Peter O. Brackett
 
Posts: n/a
Default

Slick:

[snip]
I disagree completely. The theoretical impedance of a resonant
series L and C (which is lossless) is zero. So in a conjugate
match, where they cancel out, in an ideal loss-less world, it
would be equivalent to the series C and L not being there at all,
with the source and load 50 ohms free to pass max. power delivered to
the load.

[snip]

Which is exactly what happens for all energy passing through at
the resonant frequency of the series LC!

And for instance if you are testing with a sinusoidal generator at
that frequency that is exactly what you will observe.

Of course if you are testing with a broad band signal rather
than a sinusoidal signal lots of much more interesting stuff
happens. That all can be calculated simply by using the
full functional descriptions of the network/transmission
system, i.e. assuming Z = Z(p) where p = s + jw, etc, etc...

[snip]
??? if the square of the magnitude of the voltage RC is the power RC,
then your statement is incorrect.

[snip]

To which voltage reflection coefficient do you refer? :-)

No! The square of the magnitude of the voltage reflection coefficient is
not,
in general, equal to the power reflection coefficient.

[snip]
That's why it is incorrect for complex Zo.

[snip]

Slick, no "correctly" defined reflection coefficient is "incorrect".

There can easily be an infinity of different "correct" reflection
coefficients so defined,
and none is "incorrect" so long as no incorrect conclusions are drawn from
their use.

The only "incorrect" ones are the reflection coefficients that are not
defined based upon simple non-singular linear combinations of the electrical
variables i and v.

Slick, your view of the reflection coefficient world is far too narrow!

Widen your horizons, there is more than one way to go to hell, and
chosing a particular definition of a reflection coefficient and forcing
all others to believe in it is nothing short of bigotry!

[snip]
Maybe "Mother Nature" should take a Les Besser course...

[snip]

I am sure that Dr. Besser is an honorable and accomplished man despite
his obviously narrow views of "waves".

[snip]
I totally disagree again:

Did you read Williams' data?

[snip]

Yes I "scanned" it and lost interest quickly, because of the gratuitous
use of mind boggling numerical tables in ASCII text on a newsgroup
posting!

I am sure that William did a lot of work whilst typing in those long
strings of numbers without error. Good work William!

Hey I'll scan in and post a listing of a couple of thousand lines of the Zo
versus frequency of 18,000 feet of plastic insulated AWG 24 wire if that
will help. I've got hundreds and hundreds of pages of such data! :-)

[snip]
Excellent work William. You are also showing how
a rho1 leads to ridiculous numbers for the equation:

SWR = (1 + rho)/(1 - rho)

The non-conjugate equation simply cannot handle
complex Zo.

Some people think we should throw out the SWR formula
completely, but this is complete nonsense, of course.

SWR = (1 + rho)/(1 - rho) works for 0=rho=1,
for very good reason, as it applies to passive networks only.

And the conjugate will always give 0=rho=1,
even with a complex Zo.

[snip]

Hey, again your view of rho and VSWR is too narrow.

Ask yourself what is the meaning of SWR in that formula
when rho is complex and SWR is complex!

Actually if you let your mind expand a little beyond your
narrow view of things you will find that complex SWR can
have a physical and useful meaning as well.

--
Peter K1PO
Indialantic By-the-Sea, FL