View Single Post
  #19   Report Post  
Old March 17th 07, 02:58 AM posted to rec.radio.amateur.homebrew
Chris Jones Chris Jones is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 19
Default ? on neon light as static discharge device

Dave wrote:


"Chris Jones" wrote in message
...
Dave wrote:

I saw somewhere that you could use an NE-2 bulb between the antenna
"hot" lead and ground as a static discharge device for a receiver, but
can't find
an NE-2 and don't know anything about neon bulbs. Anybody know if a
standard neon bulb rated at 125 VAC could be used in this manner? Or
how I
could test it? I'm thinking about charging up a 50V electrolytic
capacitor
and hitting the bulb with that, to see if it discharges the cap. I have
a .22uF 630V mylar cap between the antenna and the input to the tuner
because the 35V disc I had there got blown, so I know that static can be
a
problem with my setup even though it is grounded at two points.
Would welcome any ideas anyone has on how to make this work...

Thanks,

Dave


Your "standard neon bulb rated at 125 VAC" probably contains a series
resistor of maybe 100kOhms, and so will be not much use for protecting
anything, because any current would develop too much voltage across the
series resistor. If you open it up and remove the resistor then it will
be
able to shunt larger currents, though it still may not be ideal for
protecting receivers. (The main advantage of the neon as a protection
device is very low capacitance which could be important on the higher
frequency bands, but another advantage would be that it would introduce
practically no intermodulation even in very strong signal conditions, but
the breakdown voltage is probably so high that it may not protect solid -
state receivers very well, as someone else already mentioned. You can
buy a ceramic cased gas discharge surge arrestor, they are popular for
telephone circuits. e.g.:
http://www.epcos.com/inf/100/ds/ec350xx0810.pdf
)

You can probably make the bare neon bulb flicker by charging up something
with static electricity (e.g. rub a balloon on your head or on a jumper)
and then hold this near the bulb so you can hear crackling.

Chris


Hey Chris,

Thanks for the input. I am wondering why a neon bulb would include a 100K
resistor... To maybe lessen the current being driven through the bulb?
I'm
going to have to check that out. Still, I am thinking that a couple of
back-to-back diodes each with a 100K resistor in series would probably do
what I want. Going to try my hand at building a test-bed and give it a
shot. Will check out the gas discdharge surge arrestor though. Sounds
much simpler, and likely more reliable.

Appreciate your feeback.

Dave


I think that the diodes with resistors in series will probably not be ideal.

If you want to just discharge small steady currents of static electricity
being picked up by your antenna then all you need is a 100k (or 10k)
resistor from the antenna to ground.

If you want to protect against voltage spikes (e.g. caused by distant
lightning), (practically nothing will stop direct lightning) then your
diodes, connected in parallel, and one pointing in each direction, will
offer some protection, but in that case you must leave out the series
resistors because the series resistors will stop the diodes from performing
any useful function. If you are likely to experience strong radio signals
that could produce more than 0.2V on your antenna (and I would guess that
the answer is likely to be yes), then maybe the diodes will introduce
intermodulation (a form of interference) into your signal. In this case, a
number of diodes in series, in each direction, will allow larger RF signals
to pass without excessive distortion.

\|/
| Antenna
|
*-----\/\/\/\------. 100k resistor
| |
*--||--||--||---* 3x diodes, one direction
| |
*---||--||--||--* 3x diodes, other direction
| |
'--||--To Rx ___ Earth
Cap _