View Single Post
  #5   Report Post  
Old June 28th 07, 12:09 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
Mike Kaliski Mike Kaliski is offline
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 182
Default AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency


"Radium" wrote in message
oups.com...
Hi:

Please don't be annoyed/offended by my question.

I have a very weird question about electromagnetic radiation,
carriers, and modulators.

Is it mathematically-possible to carry a modulator signal with a
frequency of 10^1,000,000,000-to-the-power-10^1,000,000,000 gigacycles
every 10^-(1,000,000,000-to-the-power-10^1,000,000,000) nanosecond and
an amplitude of 1-watt-per-meter-squared on a AM carrier signal whose
frequency is 10^-(1,000,000,000-to-the-power-10^1,000,000,000)
nanocycle* every 10^1,000,000,000-to-the-power-10^1,000,000,000 giga-
eons and whose amplitude is a minimum of 10^1,000,000,000-to-the-
power-10^1,000,000,000 gigaphotons per 10^-(1,000,000,000-to-the-
power-10^1,000,000,000) nanosecond?

If it is not mathematically-possible, then please explain why.

10^-(1,000,000,000-to-the-power-10^1,000,000,000) second is an
extremely short amount of time. 10^-(1,000,000,000-to-the-
power-10^1,000,000,000) nanosecond is even shorter because a
nanosecond is shorter than a second.

10^1,000,000,000-to-the-power-10^1,000,000,000 cycles is an extremely
large amount of cycles. 10^1,000,000,000-to-the-power-10^1,000,000,000
gigacycles is even more because a gigacycle is more than a cycle.

Giga-eon = a billion eons

Eon = a billion years

Gigacycle = a billion cycles.

*nanocycle = billionth of a cycle

Gigaphoton = a billion photons

10^1,000,000,000-to-the-power-10^1,000,000,000 -- now that is one
large large number.

10^1,000,000,000 = 10-to-the-power-1,000,000,000

So you get:

(10-to-the-power-1,000,000,000) to the power (10-to-the-
power-1,000,000,000)

10^-(1,000,000,000-to-the-power-10^1,000,000,000) = 10^-(10-to-the-
power-1,000,000,000)-to-the-power-(10-to-the-power-1,000,000,000)

10^-(10-to-the-power-1,000,000,000) to the power (10-to-the-
power-1,000,000,000) is an extremely small number at it equals 10-to-
the-power-NEGATIVE-[(10-to-the-power-1,000,000,000) to the power (10-
to-the-power-1,000,000,000)]

No offense but please respond with reasonable answers & keep out the
jokes, off-topic nonsense, taunts, insults, and trivializations. I am
really interested in this.


Thanks,

Radium


Radium

The answer is no. It takes a finite time for even so called 'instantaneous'
quantum interactions to occur, so the frequencies quoted are a nonsense.
Essentially frequencies above around 10 ^ 30 Hz may (as) well not exist. I
am probably a few orders of magnitude out here, but that is the general
idea.

For a detailed explaination see "The Road to Reality: A complete Guide to
the Laws of the Universe by Roger Penrose - ISBN 0739458477". Available from
Amazon and all good booksellers. Mr. Penrose has collaborated with some of
the greatest theoretical mathamaticians and physicists of the last fifty
years and if you can follow the maths, all will become clear. This book will
explain a lot of the maths required anyway, so worth giving it a go.

Most mathematicians prefer to simplify equations by removing superfluous
zeroes and exponents by cancellation on either side of the equation. :-)

Mike G0ULI