View Single Post
  #108   Report Post  
Old July 4th 07, 07:08 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
Brenda Ann Brenda Ann is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 855
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"isw" wrote in message
...

After you get done talking about modulation and sidebands, somebody
might want to take a stab at explaining why, if you tune a receiver to
the second harmonic (or any other harmonic) of a modulated carrier (AM
or FM; makes no difference), the audio comes out sounding exactly as it
does if you tune to the fundamental? That is, while the second harmonic
of the carrier is twice the frequency of the fundamental, the sidebands
of the second harmonic are *not* located at twice the frequencies of the
sidebands of the fundamental, but rather precisely as far from the
second harmonic of the carrier as they are from the fundamental.

Isaac


I can't speak to second harmonics of a received signal, though I can't think
why they would be any different than an internal signal.. but:

When you frequency multiply and FM signal in a transmitter (As used to be
done on most FM transmitters in the days before PLL came along), you not
only multiplied the extant frequency, but the modulation swing as well. i.e.
if you start with a 1 MHz FM modualated crystal oscillator, and manage to
get 500 Hz swing from the crystal (using this only as a simple example),
then if you double that signal's carrier frequency, you also double the FM
swing to 1 KHz. Tripling it from there would give you a 6 MHz carrier with a
3 KHz swing, and so on.