View Single Post
  #280   Report Post  
Old July 17th 07, 04:30 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
isw isw is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2007
Posts: 68
Default AM electromagnetic waves: 20 KHz modulation frequencyonanastronomically-low carrier frequency

In article .com,
Keith Dysart wrote:

On Jul 16, 11:31 am, John Fields
wrote:
On Sun, 15 Jul 2007 14:57:17 -0700, Keith Dysart
wrote:
I thought the experiment being discussed was one where the
modulation was 1e5, the carrier 1e6 and the resulting
spectrum .9e6, 1e6 and 1.1e6.


---
That was my understanding, and is why I was surprised when you made
the claim, above:

"It does not matter how the .9e6, 1.0e6 and 1.1e6 are put into
the resulting signal. One can multiply 1e6 by 1e5 with a DC
offset, or one can add .9e6, 1.0e6 and 1.1e6. The resulting
signal is identical."

which I interpret to mean that three unrelated signals occupying
those spectral positions were identical to three signals occupying
the same spectral locations, but which were created by heterodyning.

Are you now saying that wasn't your claim?
---


No, that was indeed the claim. As a demonstration, I've
attached a variant of your original LTspice simulation.
Plot Vprod and Vsum. They are on top of each other.
Plot the FFT for each. They are indistinguishable.


-- lots o' snipping goin' on --

OK. I haven't been (had the patience to keep on) following this
discussion, so I apologize if this is totally inappropriate, but

If the statements above refer to creating that set of signals by using a
bunch of signal generators, or alternately by using some sort of actual
"modulation", the answer is, there is a very significant difference.

In the case where the set is created by modulating the "carrier" with
the low frequency, there is a very specific phase relationship between
the signals which would be essentially impossible to achieve if the
signals were to be generated independently. In fact, the only difference
between AM and FM/PM is that the phase relationship between the carrier
and the sideband set differs by 90 degrees between the two.

Isaac