View Single Post
  #449   Report Post  
Old January 2nd 08, 02:03 AM posted to rec.radio.amateur.antenna
Cecil Moore[_2_] Cecil Moore[_2_] is offline
external usenet poster
 
First recorded activity by RadioBanter: Mar 2007
Posts: 3,521
Default Standing-Wave Current vs Traveling-Wave Current

Roger wrote:
The principles of superposition are mathematically usable, not too hard,
and I think very revealing. Yes, if we use part of the model, we must
use it all the way. To do otherwise would be error, or worse.


Roy and Keith don't seem to realize that the zero source
impedance for the ideal voltage source is only when the
source is turned off for purposes of superposition. They
conveniently avoid turning the source voltage on to complete
the other half of the superposition process. When the
source signal and the reflected wave are superposed at
the series source resistor, where the energy goes becomes
obvious. Total destructive interference in the source
results in total constructive interference toward the load.
See below.

You have been a supporter of this theory for a long time.


Yes, I have. I am a supporter of the principles and laws of
physics. Others believe they can violate the principle of
conservation of energy anytime they choose because the
principle of conservation of energy cannot be violated -
go figure.

Roger, I have explained all of this before. If you are
capable of understanding it, I take my hat off to you.
Here's what happens in that ideal voltage source using
the rules of superposition.

1. With the reflected voltage set to zero, the source
current is calculated which results in power in the
source resistor. Psource = Isource^2*Rsource

2. With the source voltage set to zero, the reflected
current is calculated which results in power in the
source resistor. Pref = Iref^2*Rsource

Now superpose the two events. The resultant power
equation is: Ptot = Ps + Pr + 2*SQRT(Ps*Pr)cos(A)
where 'A' is the angle between the source current
and the reflected current. Note this is NOT power
superposition. It is the common irradiance (power
density) equation from the field of optics which
has been in use in optical physics for a couple of
centuries so it has withstood the test of time.

For the voltage source looking into a 1/2WL open
circuit stub, angle 'A' is 180 degrees. Therefore
the total power in the source resistor is:

Ptot = Ps + Pr + 2*SQRT(Ps*Pr)cos(180) or

Ptot = Ps + Pr - 2*SQRT(Ps*Pr) = 0

Ptot in the source resistor is zero watts but we
already knew that. What is important is that the
last term in that equation above is known as the
"interference term". When it is negative, it indicates
destructive interference. When Ptot = 0, we have
"total destructive interference" as defined by
Hecht in "Optics", 4th edition, page 388.

Whatever the magnitude of the destructive interference
term, an equal magnitude of constructive interference
must occur in a different direction in order to
satisfy the conservation of energy principle. Thus
we can say with certainty that the energy in the
reflected wave has been 100% re-reflected by the
source. The actual reflection coefficient of the
source in the example is |1.0| even when the source
resistor equals the Z0 of the transmission line.
I have been explaining all of this for about 5 years
now. Instead of attempting to understand these relatively
simple laws of physics from the field of optics, Roy
ploinked me. Hopefully, you will understand.

All of this is explained in my three year old Worldradio
energy article on my web page.

http://www.w5dxp.com/energy.htm
--
73, Cecil http://www.w5dxp.com