View Single Post
  #4   Report Post  
Old January 24th 08, 03:06 AM posted to rec.radio.amateur.antenna
Mike Monett Mike Monett is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 23
Default Where's the energy? (long)

Roy Lewallen wrote:

[...]

The traces are drawn in the order Eh, Ee, and total. During the
initial forward wave, Eh and Ee are equal, so the Ee overwrites
the Eh trace.


Good - thanks.

[...]

My problem here is someone wrote a web page that claims the
electric and magnetic fields are orthogonal:


http://www.play-hookey.com/optics/tr...etic_wave.html


You're making the same error that Cecil often does, confusing time
phase with directional vector orientation. The orthogonality of E
and H fields refers to the field orientations of traveling plane
TEM waves in lossless 3D space or a lossless transmission line, at
the same point and time.


Now you are confusing me with Cecil. I have no difficulty with the E
and H field orientation.

The E and H fields of these traveling waves are always in time
phase, not in quadrature.


Yes, that's what I tried to explain to him also.

The graphs show the magnitudes of the waves at various points
along the line. These represent neither the time phase nor the
spatial orientation of the E and H fields.


I tried sending him an email to show if the fields were
orthogonal as he claims, it would look like a pure reactance, and
no energy would be transmitted. But he is stuck on his idea and
won't budge.


Good for him - he's absolutely correct.


There is a bad mixup here. He claims:

"Note especially that the electric and magnetic fields are not in
phase with each other, but are rather 90 degrees out of phase. Most
books portray these two components of the total wave as being in
phase with each other, but I find myself disagreeing with that
interpretation, based on three fundamental laws of physics"

He claims the E and H fields are in quadrature. I claim he is wrong.

If the E and H fields were in time quadrature, you'd have a power
problem.


I believe that is what I tried to tell him. He bases his argument on
the following:

1. "The total energy in the waveform must remain constant at all
times."

Not true. It obviously goes to zero twice each cycle.

2. "A moving electric field creates a magnetic field. As an electric
field moves through space, it gives up its energy to a companion
magnetic field. The electric field loses energy as the magnetic
field gains energy."

Only if the environment is purely reactive. Not true with a pure
resistance.

3. "A moving magnetic field creates an electric field. This is
Faraday's Law, and is exactly similar to the Ampere-Maxwell law
listed above. A changing magnetic field will create and transfer its
energy gradually to a companion electric field."

Again, not true in a resistive environment.

But they're not. They're in phase in any medium or transmission
line having a purely real Z0 (since Z0 is the ratio of E to H of a
traveling wave in that medium). This includes all lossless media.


But they're always physically oriented at right angles to each
other - i.e., orthogonally, according to the right hand rule.


Yes, there is no confusion about this whatsoever.

[...]

Roy Lewallen, W7EL


Regards,

Mike Monett