Roger Sparks wrote:
To me, this shows that my traveling wave analysis on an instant basis
is not correct because the energy can not be located precisely on a
degree-by-degree scale. Yes, it is correct on the average over 360
degrees, but not instantaneously. We are missing something.
What you are missing is the localized interference patterns
within the individual cycles. The interference changes from
destructive to constructive every 90 degrees. For every
negative (destructive) interference term, there is an equal
magnitude positive (constructive) interference term 90 degrees
later. These, of course, average out to zero. Exactly the
same thing happens when a coil or capacitor is present in
a circuit. When the instantaneous voltage of a source is
zero and thus delivering zero instantaneous power, a
circuit capacitor is delivering energy back into the
circuit that can be dissipated by a resistor.
Central to traveling waves is the assumption that the wave is not
compressable. The energy is assumed to flow in a consistantly
predictable mannor that is linear and described by a sine wave.
That assumption is violated when energy is delayed for reasons
other than distance of travel, which is demonstrated in this example.
Power is certainly compressible. One can stuff 100 amphere-
hours into a battery in 2 hours and take 20 hours to remove it.
Why can't 60 watts of instantaneous power be stuffed into
a reactance and be removed 90 degrees later?
I am not ready to suggest a cure for my traveling wave analysis. I
only see that it does not work to my expectations.
Your expectations seem to be based on a conservation of
power principle which doesn't exist. There is no violation
of linearity if the energy dissipation is delayed by 90
degrees or by ten billion years.
I don't recall any published material where anyone tried
to explain where the instantaneous energy goes while at
the same time denying the possibility of interference.
--
73, Cecil
http://www.w5dxp.com