View Single Post
  #262   Report Post  
Old March 29th 08, 07:45 PM posted to rec.radio.amateur.antenna
Keith Dysart[_2_] Keith Dysart[_2_] is offline
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 492
Default The Rest of the Story

On Mar 27, 2:06 am, Roger Sparks wrote:
Cecil Moore wrote:
Roger Sparks wrote:
You need to take a look at the spreadsheets.


Roger, in a nutshell, what is the bottom line?


The bottom line in a nutshell? I'll try.

First, I added a note to both spreadsheets indicating that zero degrees
is CURRENT zero degrees. This because the source turns out to be
reactive, with current peak 45 degrees from voltage peak.

http://www.fairpoint.net/~rsparks/Sm...Reflection.pdf


I was not able to discern the derivation of the various equations
though the data in the columns looked somewhat reasonable. Were
the equation really based on the opening paragraph statement of
100 Vrms, or is it scaled to a different source voltage. The sin
functions have an amplituted of 100, which suggests a source of
200 volts or Vrms of 141.4 volts.

The spreadsheet addresses the following issues:

Does the traveling wave carry power? Yes. The spreadsheet was built
assuming that power is carried by traveling waves. Because the
resulting wave form and powers seem correct, the underlaying assumption
seems correct.


It was not obvious which columns were used to draw this correlation.

However, even if this experiment is consistent with the hypothesis
it only takes one experiment which is not to disprove the hypothesis.

Is power conserved on the transmission line, meaning, can the energy
contained in power be conserved and located over time on the
transmission line? Yes, the spreadsheet was built assuming that power
could be conserved and traced over time so the underlaying assumption
seems correct.

Does interference occur in this example? The spreadsheet was built
assuming that voltage and currents from superpose in a manner consistent
with constructive and destructive interference, so the underlaying
assumption seems correct.

Is power stored in the reactive component for release in later in the
cycle or during the next half cycle? Yes, power is stored on the
transmission line during the time it takes for power to enter the line,
travel to the end and return. The time of wave travel on the
transmission line is related to the value of the reactive component.

Does the direction of wave travel affect the measurement of voltage and
the application of power to a device? Yes. A wave loses energy (and
therefore voltage) as it travels through a resistance. As a result,
power from the prime source is ALWAYS applied across the sum of the
resistance from the resistor AND transmission line.


I am not sure that I would describe this as the wave losing energy,
but rather as the voltage dividing between the two impedances.
If the source resistance was replaced by another transmission,
which could easily be set to provide a 50 ohm impedance, would
you still describe it as the wave losing energy?

The spreadsheet was
built using this assumption and seems correct. (At times during the
cycle, the forward and reflected waves oppose, resulting in very little
current through the resistor. During those times, the power applied to
the transmission line is much HIGHER because the reflected wave reflects
from the load and source, and merges/adds to the forward wave from the
source.)


I am not convinced. When there is very little current through the
resistor,
there is also very little current into the transmission line. This
suggests to me that the power applied to the transmission line is low.

....Keith