Plate Resistance
On Jun 2, 10:01*pm, walt wrote:
On Jun 2, 6:43*pm, Keith Dysart wrote:
On Jun 2, 9:52*am, Richard Clark wrote:
Start with Walt's:
2 Finals 6146B
In this condition the DC plate voltage is 800 v and plate current is 260 ma. DC input power is therefore 800·V·0.26·A = 208·W.
Yup. Measure 800V at 0.26A and the power is 208 W. No mention of
resistance. This is good.
From Walt's data indicating 100W and the schematic showing a 5 ohm
cathode resistor, one
might infer that each tube is dissipating (208-100-(5*.26))/2-53.35
W. Feel free to include
the heater and grid dissipations for a more accurate evaluation.
From the 8146B spec sheet, depending on the operating point, Rp (i.e.
slope of plate E-I curve)
is between 10k and 30k so for the two tubes in the circuit it would be
5k to 15k ohms. But this
number is not much use for computing dissipations.
...Keith
Keith, I measured 1400 ohms at the input of the pi-network. The output
power was 100 w at 50 ohms, meaning an output voltage of 50 v and
current 1.414 a. The ratio of output to input resistances of the pi-
network is 28, meaning the voltage at the network input is 374.17 v.
Thus, neglecting the small loss in the network, the input current to
the network is 0.267 a. and the power entering the network is 100 w.
I prefer to consider the source resistance of the power amp to be at
the output of the network, which, when adjusted to deliver 100 w into
the 50 + j0 load, the source resistance is 50 ohms. On the other hand,
if you wish to consider the source resistance at the input of the
network, then it's 1400 ohms, not somewhere between 5k and 15k ohms.
Consequently, if Rp is between 5k and 15k, Rp cannot be considered the
source resistance of the amp. From this info I still believe that Rp
is not the source resistance of an RF power amp.
I understand that the efficiency of the amp is determined by the
difference between plate power input output power, which is the power
lost to dissipation in the plate that is 108 w in the example I
presented. Efficiency does not include filament and grid powers.
Walt, W2DU
Richard, perhaps our disagreement on Rp is only in a misunderstanding
concerning 'real'. Contrary to what you believe I said, I consider
resistance Rp as real, but not as a resisTOR. And even though 'real',
Rp is non-dissipative, and therefore does not dissipate any power--it
only represents power that is not developed in the first place by
causing a reduction of the plate voltage developed across the load
current increases--so how could it be 'source' of the power delivered
to a load? In the absence of Rp the output power would be greater by
the amount lost by the presence of Rp.
Walt
|