Where does it go? (mismatched power)
On Jun 13, 6:16*am, K1TTT wrote:
just for fun... explain why i can see that discontinuity between z01
and z02 when i hook up my tdr.
That's easy, because it *physically exists in reality* with a voltage
reflection coefficient of (Z02-Z01)/(Z02+Z01) = 0.5. It is related to
the indexes of refraction in the field of optics from which the same
reflection coefficient can be calculated.
The difficult question is: Exactly why doesn't that same physical
reflection coefficient reflect half of the forward voltage when it is
Z0-matched during steady-state?
The answer is that it indeed does reflect 1/2 of the forward voltage
during steady-state but that wavefront interacts with 1/2 of the
reflected voltage returning from the mismatched load which is equal in
magnitude and 180 degrees out of phase. In this case, superposition of
the two waves results in wave cancellation (total destructive
interference). The energy components in those two waves are combined
and redistributed back toward the load as constructive interference in
phase with the forward wave from the source. That's where the
reflected energy goes.
That's why the s-parameter analysis theory could be important to hams.
By merely measuring the four reflection/transmission coefficients
(s11, s12, s21, s22) one learns the basics of superposition. S-
parameter analysis was covered in my 1950's college textbook, "Fields
and Waves in Modern Radio", by Ramo and Whinnery (c)1944. I don't know
how or why the younger generation missed it.
--
73, Cecil, w5dxp.com
|