View Single Post
  #208   Report Post  
Old July 1st 10, 02:14 PM posted to rec.radio.amateur.antenna
K1TTT K1TTT is offline
external usenet poster
 
First recorded activity by RadioBanter: Apr 2010
Posts: 484
Default what happens to reflected energy ?

On Jul 1, 12:37*pm, Cecil Moore wrote:
On Jun 30, 11:29*am, Keith Dysart wrote:

Check the a0 coefficient in the Fourier transform. This represents
the DC component of the signal.


And the result is zero EM waves, either forward or reflected, and your
argument falls apart.

Without this, how would you deal with a signal such as
* V(t) = 10 + 2 cos(3t)


If the cosine term is zero, there are zero EM waves, either forward or
reflected, and your argument falls apart.

Incidentally, V(t) = 10, is a perfect way to prove that energy and the
time derivitive of energy are not the same thing and your argument
falls apart.

Alternatively, one can use the standard trick for dealing with
non-repetitive waveforms: choose an arbitrary period. 24 hours
would probably be suitable for these examples and transform from
there. Still, you will have zero frequency component to deal
with, but there will be some at higher frequencies (if you
choose your function to make it so).


Windowing doesn't generate EM waves where none exist in reality and
your argument falls apart.
--
73, Cecil, w5dxp.com


a better argument is that a constant voltage produces a constant
electric field everywhere, since the field is not varying in time or
space there is no time or space derivative to create a magnetic field
so there can be no propagating em wave. you could do the same with
zero or constant current producing a constant magnetic field.

essentially the dc case IS unique in that you must wait forever for it
to reach sinusoidal steady state since the lowest frequency component
is 0hz.