An antenna question--43 ft vertical
On 5.7.15 18:56, rickman wrote:
On 7/4/2015 9:43 PM, Jeff Liebermann wrote:
On Sat, 04 Jul 2015 19:33:30 -0400, Jerry Stuckle
wrote:
On 7/4/2015 7:22 PM, Jeff Liebermann wrote:
On Sat, 04 Jul 2015 19:04:01 -0400, Jerry Stuckle
wrote:
Think of it this way, without the math. On the transmitter side of
the
network, the match is 1:1, with nothing reflected back to the
transmitter.
So you have a signal coming back from the antenna. You have a perfect
matching network, which means nothing is lost in the network. The
feedline is perfect, so there is no loss in it. The only place for
the
signal to go is back to the antenna.
Wikipedia says that if the source is matched to the line, any
reflections that come back are absorbed, not reflected back to the
antenna:
https://en.wikipedia.org/wiki/Impedance_matching
"If the source impedance matches the line, reflections
from the load end will be absorbed at the source end.
If the transmission line is not matched at both ends
reflections from the load will be re-reflected at the
source and re-re-reflected at the load end ad infinitum,
losing energy on each transit of the transmission line."
And you believe everything Wikipedia says? ROFLMAO.
But that also explains your ignorance.
Let's see if I understand you correctly. You claim that with a power
amplifier (source) output impedance that is perfectly matched to the
coax cable, but not necessarily the load (antenna), any reflected
power from the load (antenna) is bounced back to the load (antenna) by
the perfectly matched source (power amp). Is that what you're saying?
Yet, when I have a perfectly matched load (antenna), all the power it
is fed is radiated and nothing is reflected. You can't have it both
ways because the reflected power from the load (antenna), becomes the
incident power going towards the source (power amp). Matched and
mismatched loads do NOT act differently depending on the direction of
travel. If you claim were true, then transmitting into a matched
antenna or dummy load would reflect all the power back towards the
transmitter.
I think this is one of those situations where a casual explanation won't
work. You can use a "casual" explanation when the various
qualifications for a simplification apply. But to do that, the
qualifiers have to be fully understood and no one here is showing what
the qualifiers are much less that they are met. So until we get a real
explanation I will stick with what I recall. In the end, to settle this
we may have to use the math.
I'm sure someone in s.e.d could explain this properly. Some of them may
be purely argumentative, but some really know their stuff. I believe
the description of a conjugate match is the mathematical inverse of the
complex impedance of the antenna "viewed" through the feed line, but I
have to admit I don't really know what that implies or if it is even an
accurate description.
You're right. To get a 1:1 match for the piece of feedline between
the transmitter and the antenna tuning unit, the tuning unit has
to present a conjugate match to the feedline from the tuning unit
to the antenna. If there is a reflected wave from the antenna, it
will be re-reflected back toward the antenna from the tuning unit.
The ping-ponging signal will die out by antenna radiation or feedline
losses. The situation is quite OK with slow modulations (like voice),
but the ping-ponging is unacceptable for fast signals (like analog TV).
--
-TV
|