View Single Post
  #134   Report Post  
Old July 6th 15, 03:19 AM posted to rec.radio.amateur.antenna
John S John S is offline
external usenet poster
 
First recorded activity by RadioBanter: May 2011
Posts: 550
Default An antenna question--43 ft vertical

On 7/5/2015 7:21 PM, wrote:
John S wrote:
On 7/5/2015 5:24 PM,
wrote:
Roger Hayter wrote:
wrote:


The output impedance of an amateur transmitter IS approximately 50 Ohms
as is trivially shown by reading the specifications for the transmitter
which was designed and manufactured to match a 50 Ohm load.

Do you think all those manuals are lies?

You are starting with a false premise which makes everything after that
false.


A quick google demonstrates dozens of specification sheets that say the
transmitter is designed for a 50 ohm load, and none that mention its
output impedance.

If the source impedance were other than 50 Ohms, the SWR with 50 Ohm
coax and a 50 Ohm antenna would be high. It is not.


Where is the source impedance found on a Smith chart? Also, if you have
EZNEC, you will not find a place to specify source impedance but it will
show the SWR.


A Smith chart is normalized to 1.



So, it can't be used in a 50 ohm environment? What does that have to do
with anything? The chart has a SWR graph and nowhere does it need source
impedance. If you disagree, please link to one.


EZNEC allows you to set the impedance to anything you want and assumes
the transmission line matches the transmitter.


Please show the EZNEC statement that "assumes the transmission line
matches the transmitter". Look in the help section if you have EZNEC and
can cut and paste or just refer me to the chapter and verse. Also, if
you have EZNEC, you can insert a transmission line with arbitrary
characteristic impedance, put a load on the far end matching the line,
and look at the SWR. It will still be 1:1 because the LOAD matches the
LINE. Not because EZNEC assumes a source impedance. Try it with and
report back here.

There is no way that a source initiates reflections. That is a property
of the line and load only. It may re-reflect a wave reflected from the
load, but that is all.

You can also verify this in LTSPICE if you wish.