Home |
Search |
Today's Posts |
#8
![]() |
|||
|
|||
![]()
Hi Jerry sorry that I didn't respond to you earlier but here goes
untuned elements which haveWhen you decide to get something going you need a means to get there. When you decide on the means you need to know if you are expending the minimum energy to get there In this particular case we have decided on generating a time varying field around some reradiatiung elements to obtain a radiating field of some sort Since we are applying energy to elements we want to know if the elements are doing a good job or are they losing out on energy translation by generating heat e.t.c instead of it all going where I want it to. So what we do is find out what energy we put in to obtain our objective and measure what we got out towards our objective to see how effective we were which is a measure of efficiency... Ideally we dont want to produce heat and all that other stuff but the anteena array that we have chosen to do this is a yagi array of elements which starts of with a resonant dipole which has a purely resistive impedance. But the yagi then goes on to upset things by adding which have a reactive impedance which detracts from the purly resistive value of the impedance which means losses when we should have added extra resonant elements to the set up as a means of adding to the structure to maintain zero losses BUT the yagi does go a long way towards our objectives so it has hung around for a long while. As a side issue we should also consider the environment that our array is working in and also the type of element material we are using as well as the means taken to input power but that gets more complicated so the question is really revolving around the energy input versus a magnetic near field generation that goes on to form a far field radiation field. SOOOOOOOooooo efficiency in this case compares the electrical power applied to the yagi to generate a magnetic and electric fieldaround the yagi and to check how much energy was lost on the way to our objective. Sorry for the delay but fortunately I did check back in before I moved on to other things Regards Art Jerry Martes wrote: Hi Art You know, I am really a slow learner. I still dont understand how efficiency is defined. Can you try again to teach me how efficiency is defined?? Thanks Jerry "art" wrote in message ups.com... Hi Jerry perhaps I am wrong that there ARE people who want to talk antennas We went thru this some time ago and I was referring to efficiency of the yagi antenna with respect to the radiation field where much is reflected to areas of no concern. Others did not like this and said efficiency referred to is one of the radiation facets of a radiating array and the yagi is efficient and then the sniping statrted and the newsgroup went down hill as others joined to emulate and perpetuate abrasive non antenna related subjects. I just popped back to see if the group wanted to change back to antenna talk and posted the term efficiency of the yagi in terms of radiation which everybody was auguing about. Well things haven't changed they still just want to throw stones and more will join in as the thread goes on., Ill stick it out for an hour or so and then move on again. Cant wait for somebody to compare with free space stuff to add to the confusion, I know it will come Jerry Martes wrote: "art" wrote in message ups.com... Some time ago I mentioned how inefficient Yagi design antennas were thinking more in the way of how little of the radiation used got to its required direction. At that time people said the antenna was efficient though they wanted to talk about actual radiation efficiency and the sniping began .Nobody but nobody came back with the radiation efficiency of a Yagi as they saw the question, they just wanted to throw stones.Imagine that antennas was not what the experts wanted to talk about and the newsgroup took a turn for the worst So I join in with the thoughts of radiation efficiency of a yagi unless you prefere to give up this antenna newsgroup. But before you scream out and throw stones again I will referr to efficiency as most of the members of this group what's left of them think of the term. So let's look at that if that is what you preferr.. The basic small yagi has three elements one driven, one a reflector and one a director yet only one element has a truly resistive impedance whereas the other two do not. Since two elements out of the three are producing reactive impedances and wherein the reactive portions of impedance is pure waste pray tell me how one can consider a yagi as efficient? And please, please don't waste time on "I don't understand" otherwise everything drops down to the subject of spark noise which was really decided by hams a long while ago. On the other side of the coin, if the reactive portion of an impedance is not waste then why is LCR type mesh circuitry only revolve around lumped circuitry? HINT add up the power emminating from each element P =I sq times real resistance for those who are just followers. There again maybe it is best that you be honest and say you don't understand! Better that than join those who have nothing to say about antennas! Hi Art OK, I dont understand. Perhaps I could begin to understand if I was given the definition of efficiency we are using in this discussion. How do you define efficiency? Jerry |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Yagi efficiency | Antenna | |||
Yagi efficiency | Antenna | |||
Tape Measure Yagi Antenna Questions | Antenna | |||
SUPER J-POLE BEATS YAGI BY 1 dB | Antenna | |||
Yagi, OWA and Wideband Yagi etc etc | Antenna |