LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #15   Report Post  
Old April 29th 07, 06:30 PM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: Apr 2007
Posts: 46
Default Measuring Antenna Efficiency

On Apr 28, 8:07 pm, art wrote:
On 5 Mar, 14:14, "Wayne" wrote:





Wayne wrote:
When the subject of antenna efficiency comes up, it often involves a
discussion of ground losses on verticals. What about, for example, a
dipole? Could one calculate "power out/power in" by measuring the VSWR
and declaring that everything not reflected was transmitted? It would
seem more accurate to actually measure power out and power in, but that
introduces inaccuracies by having to calibrate the setup. Thoughts?

"Roy Lewallen" wrote in message


...


There's no direct way to measure the total power being radiated other than
sampling the field at many points in all directions and integrating.
"Reflected" power is not power that isn't transmitted. You can find the
power being applied to the antenna by subtracting the "reverse" or
"reflected" power from the "forward" power, but that tells you nothing
about what fraction is radiated and what fraction lost as heat.


Roy Lewallen, W7EL


Thanks for the reply. My dipole example is intended to avoid transmission
line issues by not having one, and the elements are assumed to be reasonably
low loss. If I do some quick back-of-the-envelope calculations, for a VSWR
of 1.3:1, I get an efficiency of about 98.3% (using the equation
1-gamma^2). Assuming a resistance of 1 ohm in the dipole conductors the
efficiency I calculate is about 98.6% (72/73).


Are there any other loss issues missing in this example.


I would say you are close enough to say you are correct. Because you
chose a dipole which is in a state of equilibrium and thus particles
projected from the dipole cannot collide with other particles from
other parasitic radiators. Aren't you not basically refering to the
foundations of Poyntings vector which like Gauss is refering to an
item in equilibrium when subjected to a time variable of zero value ?
If the item is not in a state of equilibrium collision
of particles may well occur without a radiation field reaction thus
one cannot calculate the resultant field since energy transfer due to
particle collision prevents the return of particles to the mother
radiator.- Hide quoted text -

- Show quoted text -


what is a particle?



 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Yagi efficiency art Antenna 117 October 5th 06 04:37 PM
Yagi efficiency Harold E. Johnson Antenna 0 September 26th 06 07:24 PM
measuring antenna resonance with an 8405a dansawyeror Antenna 16 December 8th 05 04:13 AM
High Efficiency Mobile HF Antenna? Rick Frazier Antenna 12 October 9th 04 09:41 AM


All times are GMT +1. The time now is 11:53 PM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017