Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
Quaoar hath wroth:
Nice analysis! One point: the wireless signal is constant, but the household microwave signal is semi-discreet in time. You have it backwards. When belching RF, the microwave oven power envelope looks like a half wave rectified waveform at 120Hz (twice the power line frequency) at "full power". The average power is about 70% of the peak power. However, you're correct that most people don't run a microwave oven continuously all day long. (Exception... Microwave plastic injection molding pre-heater and other industrial microwave ovens). I think (guess) that FDA/CDRH 1030.10 specifies RMS (heating) or average power, not peak power. 802.11g has an even lower average duty cycle. FCC 15.247 specs are written to prevent any one spread spectrum wireless device from hogging all the air time. That means that it not only doesn't sit on one frequency, but also turns off the power for some time to allow other devices on the same RF channel to function. I don't recall the exact numbers and am too burned out tonite to dig through the specs. However, I did find: http://www.elliottlabs.com/documents/OFDM.pdf which tries to analyze the typical transmit duty cycle for 802.11g. The authors guess is about 10% for typical traffic, which I guess is a good typical value. Like the microwave oven, most users are not belching wireless data continuously. (Exception... streaming wireless video). If the microwave is in use one hour per day [ the 1 hour per day use of a microwave oven is in my experience far greater than most people use for the cup of tea, soup, etc.], the equivalent energy exposure of the two sources of radiation are (using your numbers): Household microwave oven: 1 hour * 5 mw/sq cm = 3600sec * 5mw/sq cm = 1800 mw-sec/sq cm. OK, I'll use that. However, note that the 5mw/sq-cm is probably average power. Wireless transmitter: 24 hr * 0.16 mw/sq cm = 24 * 3600 sec/hr * 0.16 mw/sq cm = 13,825 mw-sec/sq cm. Nope. You forgot to apply the duty cycle of 10% transmission time. That reduces it to 1383 mw-sec/sq-cm. However, you're also assuming that this user spends 24 hours in front of the wireless access point. That's possible for confirmed programmers, hackers, and fanatical gamers, but methinks the average user will see a much shorter exposure time. If we assume a workplace model, I would guess 8 hours exposure which would reduce the exposure rate to 461 mw-sec/sq-cm, or about 1/4 that of the microwave oven. Similarly, the 10% average duty cycle varies by the type of user. The fanatical file sharing addict will probably approach 100% duty cycle, while the light weight mail and web page surfer, will be close to 10%. The total energy exposure from the wireless is 7.68 times the microwave exposure on an integrated basis. This is admittedly a quick estimate, since almost no one is located directly to either source in practice. Yet, it is not conclusive that the wireless is trivial compared to the microwave. The problem with this type of analysis is that the various assumptions that have been made in order to generate a single "typical" value have such a wide range of potential errors, that the resultant conglomerated calculated values are almost worthless. The main problem is that the typical wireless user may not also be a typical microwave oven user. In addition, we've ignored the distance from the RF emitter, which has a huge effect on exposure (inverse square law). I suspect that I might be the worst case user. My Verizon XV6700 cell phone has an 802.11b radio inside. I often leave it on doing the WiFiFoFum data collection. Even at 10% or less duty cycle, the proximity of the RF emitter on my belt dramatically increases my exposure. The correct way to do this would be some manner of dosimeter, similar to an ionizing radiation dosimeter. It takes into consideration duty cycle, signal strength, distance from emitter, and such. It just accumulates the total RF power exposure. I could probably design and build one, but I don't think that selling to the paranoid market is going to be a accepted as a winning business model. -- Jeff Liebermann 150 Felker St #D http://www.LearnByDestroying.com Santa Cruz CA 95060 http://802.11junk.com Skype: JeffLiebermann AE6KS 831-336-2558 |
#2
![]() |
|||
|
|||
![]()
Jeff Liebermann wrote:
"The average power is about 70% of the peak power." The way I figure it, the average power is 0.707 x peak volts x 0.707x peak amps = 0,5x peak power. Best regards, Richard Harrison, KB5WZI |
#3
![]() |
|||
|
|||
![]()
Jeff Liebermann wrote:
Quaoar hath wroth: Nice analysis! One point: the wireless signal is constant, but the household microwave signal is semi-discreet in time. You have it backwards. When belching RF, the microwave oven power envelope looks like a half wave rectified waveform at 120Hz (twice the power line frequency) at "full power". The average power is about 70% of the peak power. However, you're correct that most people don't run a microwave oven continuously all day long. (Exception... Microwave plastic injection molding pre-heater and other industrial microwave ovens). I think (guess) that FDA/CDRH 1030.10 specifies RMS (heating) or average power, not peak power. 802.11g has an even lower average duty cycle. FCC 15.247 specs are written to prevent any one spread spectrum wireless device from hogging all the air time. That means that it not only doesn't sit on one frequency, but also turns off the power for some time to allow other devices on the same RF channel to function. I don't recall the exact numbers and am too burned out tonite to dig through the specs. However, I did find: http://www.elliottlabs.com/documents/OFDM.pdf which tries to analyze the typical transmit duty cycle for 802.11g. The authors guess is about 10% for typical traffic, which I guess is a good typical value. Like the microwave oven, most users are not belching wireless data continuously. (Exception... streaming wireless video). If the microwave is in use one hour per day [ the 1 hour per day use of a microwave oven is in my experience far greater than most people use for the cup of tea, soup, etc.], the equivalent energy exposure of the two sources of radiation are (using your numbers): Household microwave oven: 1 hour * 5 mw/sq cm = 3600sec * 5mw/sq cm = 1800 mw-sec/sq cm. OK, I'll use that. However, note that the 5mw/sq-cm is probably average power. Wireless transmitter: 24 hr * 0.16 mw/sq cm = 24 * 3600 sec/hr * 0.16 mw/sq cm = 13,825 mw-sec/sq cm. Nope. You forgot to apply the duty cycle of 10% transmission time. That reduces it to 1383 mw-sec/sq-cm. However, you're also assuming that this user spends 24 hours in front of the wireless access point. That's possible for confirmed programmers, hackers, and fanatical gamers, but methinks the average user will see a much shorter exposure time. If we assume a workplace model, I would guess 8 hours exposure which would reduce the exposure rate to 461 mw-sec/sq-cm, or about 1/4 that of the microwave oven. Similarly, the 10% average duty cycle varies by the type of user. The fanatical file sharing addict will probably approach 100% duty cycle, while the light weight mail and web page surfer, will be close to 10%. The total energy exposure from the wireless is 7.68 times the microwave exposure on an integrated basis. This is admittedly a quick estimate, since almost no one is located directly to either source in practice. Yet, it is not conclusive that the wireless is trivial compared to the microwave. The problem with this type of analysis is that the various assumptions that have been made in order to generate a single "typical" value have such a wide range of potential errors, that the resultant conglomerated calculated values are almost worthless. The main problem is that the typical wireless user may not also be a typical microwave oven user. In addition, we've ignored the distance from the RF emitter, which has a huge effect on exposure (inverse square law). I suspect that I might be the worst case user. My Verizon XV6700 cell phone has an 802.11b radio inside. I often leave it on doing the WiFiFoFum data collection. Even at 10% or less duty cycle, the proximity of the RF emitter on my belt dramatically increases my exposure. The correct way to do this would be some manner of dosimeter, similar to an ionizing radiation dosimeter. It takes into consideration duty cycle, signal strength, distance from emitter, and such. It just accumulates the total RF power exposure. I could probably design and build one, but I don't think that selling to the paranoid market is going to be a accepted as a winning business model. I challenge your 10% duty cycle on wireless. My Belkin router is contantly transmitting, if I can believe the wireless activity LED. No matter, this is not a personal challenge, just a search for reality. Q |
#4
![]() |
|||
|
|||
![]()
Quaoar hath wroth:
I challenge your 10% duty cycle on wireless. My Belkin router is contantly transmitting, if I can believe the wireless activity LED. No matter, this is not a personal challenge, just a search for reality. See: http://www.elliottlabs.com/documents/OFDM.pdf The author measured peak and average power, using the ratio to determine the average duty cycle. Flooding the pipe with lots of traffic (i.e. streaming video) might result in perhaps 80-90% transmission time, depending on whether it has to wait for acknowledgements (TCP), or just spews data (UDP). However, typical mixed traffic seems to have a very low duty cycle, which is where I conjured my 10%. Duz this help or do you want more detail? Also, the LED is NOT a direct indication that the device is transmitting. The transmission times are so short, that the LED would barely be visible if directly connected to the T/R switch. You would only see a faint flicker. In order to see the flashing light better, the designers implimented a pulse stretcher function, that extends the time the LED is turned on, so that you could actually see the light. I would be happy to duplicate the tests and post the resultant oscilloscope pictures and calculations. It's actually a very simple setup and test. However, I'm burned out and have a few things to do tonite. Give me a few days as I'm planning to take some time off to catch up on all my broken promises and chores. -- Jeff Liebermann 150 Felker St #D http://www.LearnByDestroying.com Santa Cruz CA 95060 http://802.11junk.com Skype: JeffLiebermann AE6KS 831-336-2558 |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
RADIATION PATTERN OF A CYLINDRICAL HORN ANTENNA AND S-PARAMETERS (scattering matrix) | Antenna | |||
radiation pattern of log-periodic antenna | Antenna | |||
Electric Outlet Can Be Wireless Internet Link | Shortwave | |||
AM FM and Satellite threatened by Wireless Internet? | Shortwave |