Home |
Search |
Today's Posts |
#17
![]() |
|||
|
|||
![]()
Dave Oldridge wrote in
9: Near as I could measure it, the NF of the receiver after my mod was 1.2db. I had to resort to boiling and freezing water and a tiny dummy load to measure it at all. I haven't tried hot/cold tests using ice and boiling water, I didn't think it was practical. You finally measured a receiver noise temperature of 50K with hot and cold loads of 270 and 370. That means a Y factor of 1.059dB. If Y were just 0.1dB greater, NF would be 0.78dB, 0.1dB lower and, NF would be 1.66dB. With this configuration the sensitivity of NF to changes in Y are extreme, 0.4dB change in NF per 0.1dB change in Y around that point. If you made the Y measurements using the audio output of a narrow band receiver, it is very hard to make high resolution measurements (eg to 0.01dB resolution) with say, a multimeter. I have done these tests with a liquid nitrogen cooled load and room temperature load, and that gives more practical Y ratios, 3.7dB for a 1.2dBNF, and the sensitivity in NF is 0.08dB per 0.1dB change in Y. This still demands high resolution measurement of noise power. Owen |
Thread Tools | Search this Thread |
Display Modes | |
|
|