Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On Thu, 13 Dec 2007 08:40:53 -0800, Roger wrote:
And just for completeness... The fundamental equations also work when: - the signal is not sinusoidal, e.g. pulse, step, square, ... - rather than a load at one end, there is a source at each end - the sources at each end produce different arbitrary functions - the arbitrary functions at each end are DC sources It is highly instructive to compute the forward and reverse voltage and current (and then power) for a line with the same DC voltage applied to each end. ...Keith ...Keith Interesting! The important thing is to get answers that agree with our experiments. I have done some computations for DC voltage applied to transmission lines. The real surprise for me came when I realized that transmission line impedance could be expressed as a function of capacitance and the wave velocity. Z0 = 1/cC where c is the velocity of the wave and C is the capacitance of the transmission line per unit length. Hi Roger, This last round has piqued my interest when we dipped into DC. Those "formulas" would lead us to a DC wave velocity? 73's Richard Clark, KB7QHC |
Thread Tools | Search this Thread |
Display Modes | |
|
|