Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
Keith Dysart wrote:
On Dec 29, 2:31 pm, Cecil Moore wrote: Roger wrote: Are there reflections at point "+"? Traveling waves going in opposite directions must pass here, therefore they must either pass through one another, or reflect off one another. In the absence of a real physical impedance discontinuity, they cannot "reflect off one another". In a constant Z0 transmission line, reflections can only occur at the ends of the line and only then at an impedance discontinuity. Roger: an astute observation. And Cecil thinks he has the ONLY answer. Allow me to provide an alternative. Many years ago, when I first encountered this news group and started really learning about transmission lines, I found it useful to consider not only sinusoidallly excited transmission lines, but also pulse excitation. It sometimes helps remove some of the confusion and clarify the thinking. So for this example, I will use pulses. Consider a 50 ohm transmission line that is 4 seconds long with a pulse generator at one end and a 50 ohm resistor at the other. The pulse generator generates a single 1 second pulse of 50 volts into the line. Before and after the pulse its output voltage is 0. While generating the pulse, 1 amp (1 coulomb/s) is being put into the line, so the generator is providing 50 watts to the line. After one second the pulse is completely in the line. The pulse is one second long, contains 1 coulomb of charge and 50 joules of energy. It is 50 volts with 1 amp: 50 watts. Let's examine the midpoint (2 second) on the line. At two seconds the leading edge of the pulse arrives at the midpoint. The voltage rises to 50 volts and the current becomes 1 amp. One second later, the voltage drops back to 0, as does the current. The charge and the energy have completely passed the midpoint. When the pulse reaches the end of the line, 50 joules are dissipated in the terminating resistor. Notice a key point about this description. It is completely in terms of charge. There is not a single mention of EM waves, travelling or otherwise. Now we expand the experiment by placing a pulse generator at each end of the line and triggering them to each generate a 50V one second pulse at the same time. So after one second a pulse has completely entered each end of the line and these pulse are racing towards each other at the speed of light (in the line). In another second these pulses will collide at the middle of the line. What will happen? Recall one of the basics about charge: like charge repel. So it is no surprise that these two pulses of charge bounce off each and head back from where they came. At the center of the line, for one second the voltage is 100 V (50 V from each pulse), while the current is always zero. No charge crossed the mid-point. No energy crossed the mid-point (how could it if the current is always zero (i.e. no charge moves) at the mid-point. It is a minor extension to have this model deal with sinusoidal excitation. What happens when these pulses arrive back at the generator? This depends on generator output impedance. If it is 50 ohms (i.e. equal to Z0), then there is no reflection and 1 joule is dissipated in each generator. Other values of impedance result in more complicated behaviour. So do the travelling waves "reflect" off each other? Save the term "reflect" for those cases where there is an impedance discontinuity and use "bounce" for those cases where no energy is crossing a point and even Cecil may be happy. But bounce it does. ...Keith It's fairly safe to make this argument when both pulses are identical. I challenge you to obtain this result when they are not. :-) 73, Jim AC6XG |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Standing Wave Phase | Antenna | |||
Standing wave on feeders | Antenna | |||
Dipole with standing wave - what happens to reflected wave? | Antenna | |||
Newbie ?: I've Built A Simple 1/4 Wave Dipole for 2 Mtrs. Could IMake a1/2 Wave? | Homebrew | |||
What is a traveling-wave antenna? | Antenna |