Home |
Search |
Today's Posts |
#10
![]() |
|||
|
|||
![]()
On Mar 6, 1:17*am, Roger Sparks wrote:
On Wed, 5 Mar 2008 21:37:06 -0800 (PST) [snip] Thanks Keith. *I see what you are doing now, although I still don't understand your logic in faulting Cecil on the instantaneous values. *I agree with you that the instantaneous values can be tracked, but don't see a fault in Cecil's presentation. * For the special situation described in http://www.w5dxp.com/nointfr.htm Cecil is attempting to show that the reflected energy is dissipated in the source resistor. The logic he employs is: - before the reflection arrives back at the generator, the source resistor is dissipating X watts. - the reflected wave has an energy flow of Y watts. - after the reflection arrives back at the generator, the source resistor is dissipating Z watts. - since Z is equal to X + Y, the energy in the reflected wave is being dissipated in the source resistor. In other words, since the dissipation in the source resistor increases by the same amount as the power in the reflected wave, the energy in the reflected wave must be being dissipated in the source resistor. Cecil analyzes the circuit for a number of load resistances and suggests that the equality holds for any load resistance. For example, with a load resistance of 12.5 ohms, the original dissipation in the source resistor is 50 W which increases to 68 W when the 18 W reflected wave arrives back at the generator. That is, X = 50, Y = 18 and Z = 68, so Z is equal to X + Y. Cecil does all of this analysis using average powers. But we know that the power dissipation varies as a function of time and that the power in the reflected wave is a function of time. It is my contention that if it is the energy in the reflected wave that is increasing the dissipation in the source resistor, the dissipation in source resistor should occur at the same time that the reflected wave delivers the energy. In other words, not only should Z.average = X.average + Y.average, but Z.instantaneous should equal X.instantaneous + Y.instantaneous for if the dissipation in the source resistor is not tracking the energy in the reflected wave, it can not be the energy in the reflected wave that is heating the resistor. So using the same 12.5 ohm example, X.inst = 50 + 50 cos(2wt) Y.inst = 18 + 18 cos(2wt) X.inst + Y.inst = 68 + 68 cos(2wt) but Z.inst = 68 + 68 cos(2wt - 61.9degrees) So Z.inst is not equal to Y.inst + X.inst. This means that the dissipation in the resistor is not happening at the same time as the energy is being delivered by the reflected wave, which must mean that it is not the energy from the reflected wave that is heating the source resistor. So while analyzing average power dissipations suggests that the energy from the reflected wave is dissipated in the source resistor, analysis of the instantaneous power shows that it is not. ...Keith |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Now for the rest of the story! | General | |||
Now for the rest of the story! | Policy | |||
Now for the rest of the story! | General | |||
Now for the rest of the story! | Policy | |||
WTD: Paul Harvey Rest of the Story broadcasts from Sep 1 thru 6 | Broadcasting |