LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #11   Report Post  
Old March 31st 08, 09:08 PM posted to rec.radio.amateur.antenna
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 492
Default The Rest of the Story

On Mar 31, 2:22*pm, Roger Sparks wrote:
On Mon, 31 Mar 2008 10:03:52 -0700

Roger Sparks wrote:
On Sun, 30 Mar 2008 07:43:59 -0700 (PDT)
Keith Dysart wrote:


On Mar 29, 7:18 pm, Roger Sparks wrote:
On Sat, 29 Mar 2008 12:45:48 -0700 (PDT)


Keith Dysart wrote:
On Mar 27, 2:06 am, Roger Sparks wrote:
Cecil Moore wrote:
Roger Sparks wrote:
You need to take a look at the spreadsheets.

clip
http://www.fairpoint.net/~rsparks/Sm...Reflection.pdf

clip


I doubt that this will satisfy your power location concerns because the spread sheet shows more power being delivered to the resistor than is present in the voltage. *This is because the impedance of the power equation has changed due to the contribution of the current component. Consider that for columns B and C, the same current flows whether the voltage in B is applied or the voltage in C is applied. *This can only happen if the impedance seen by each respective voltage is different. *This is interference at work *
--
73, Roger, W7WKB


After posting previosly, I got to thinking that interference here is wrecking the analysis of Column D. *The traveling wave analysis is correct (Column H). *Only one current is flowing through Rs, and the current is not enough to supply the power suggested in column D. *While it is logical to add the voltages from Column B and Column C, the two voltages are often in opposition so they are not "seen" by Rs. *As a result, we must have a reflection from Rs that I am not taking into account. *


Column B is correct; this being the voltage produced by the source
divided by two.
It is also the forward voltage on the line.
Vrs.source(t) = Vf(t) = 70.7 sin(wt)

Column C is the reflected voltage (not the reflected voltage impressed
across the
source resistor). The reflection coefficient is -1, and the delay is
90 degrees
so the reflected voltage at the generator is
Vr(t) = -1 * Vf(t - 90 degrees)
= - 70.7 sin(wt-90)
= 70.7 sin(wt+90)

But Vr is impressed across the resistor in the opposite direction to
that of
Vrs.source, so the equation for total Vrs is
Vrs.total(t) = Vrs.source(t) - Vr(t)
thus column D should be B31-C31.

Alternatively,
Vrs.reflect(t) = -Vr(t)
and then
Vrs.total(t) = Vrs.source(t) + Vrs.reflect(t)

Column E is correctly computing the instantaneous power from Column D
since
P(t) = V(t) * I(t)
= V(t) * V(t) / R
= V(t) * V(t) / 50 (in this example)
but has the wrong data because of the error in Column D.

Column F is integrating the power to yield either the energy in a
cycle or
the average power per cycle (though presented in unusual units).

I agree G is erroneous and I am not sure what H is computing.

...Keith



 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Now for the rest of the story! [email protected] General 2 April 28th 06 04:39 PM
Now for the rest of the story! [email protected] Policy 2 April 28th 06 04:39 PM
Now for the rest of the story! [email protected] General 5 April 26th 06 03:23 PM
Now for the rest of the story! [email protected] Policy 5 April 26th 06 03:23 PM
WTD: Paul Harvey Rest of the Story broadcasts from Sep 1 thru 6 AM Broadcasting 0 November 8th 05 05:41 AM


All times are GMT +1. The time now is 03:50 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017