Home |
Search |
Today's Posts |
#4
![]() |
|||
|
|||
![]()
On 18 abr, 19:02, "Al Lorona" wrote:
Very cool, Roy. Thank you for this, this is good information that makes sense to me. There is a lot in there to think about and apply to the application for which I'm analyzing this antenna. When you talk about the current maximum and loss of a radial, you bring up another question. My 1/2 wave vertical is going to have a much higher feedpoint impedance than a standard 1/4 wave vertical. Let's say it's somewhere around 2000 ohms as compared to 40 or so ohms for a 1/4 wave. What effect does that higher feedpoint impedance have on the radial system? Does it relax the requirements for the number or radials or the length of them? Does it mask the loss that you'd have normally? Or do the "rules" of adding radials apply no matter what the vertical's input impedance? Thanks very much. Al W6LX "Roy Lewallen" wrote in message news ![]() Al Lorona wrote: Hi, Everybody, In the process of modeling a vertical antenna (specifically, I am using EZNEC 5.0) I am noticing an effect I did not expect which could be the result of a modeling error on my part. The antenna is a 34-foot vertical above (12) 34-foot radials, making it a 1/4 wave on 40 and a 1/2 wave on 20. On 40, the antenna works as I expected; as the ground conductivity goes up, the gain and efficiency of the antenna both increase, too. But on 20, if I increase the ground conductivity from, say, 0.005 to 0.008 S/m, the max gain and efficiency *decrease*! This is counter-intuitive to me. Can anyone point to something I'm doing wrong? Thanks, Al W6LX Ground loss is a sort of impedance matching problem. If you have perfectly conducting ground, there is no ground loss. If you have perfectly insulating ground, there is no ground loss. There's always some ground conductivity in between those extremes at which the loss is maximum. This value depends on the frequency among other things. Try a wider range of conductivities and you'll find this point. You should also be aware that if you have radials which are above but close to the ground, half wavelength ones can be considerably less efficient than quarter wavelength ones. One reason is that the points of maximum current are out near the centers of the radials, where they induce current into the lossy ground. When the radials are a quarter wavelength or shorter, the current maxima are near the center, so their fields nearly cancel. Another often-overlooked fact is that radials very close to the ground are electrically considerably longer than when more elevated. So radials which are a quarter wavelength in free space can have their current maxima well out from the center which results in lower efficiency. Roy Lewallen, W7EL Hi Al, From my experience, and simulation, a halve wave vertical has less stringent radial requirements. The current reduces with a factor of about sqrt(2000/50)= 6 (16 dB). The result is less loss in the vicinity (near field) zone of the antenna. Far field maximum of radiation (elevation) will virtually not change because of canceling effect of reradiated field from ground below the (pseudo) Brewster angle. Because of the somewhat higher radiation center with respect to a 1/4 wave, the elevation of maximum radiation will be somewhat less. Off course when you have high ground conductivity (for example fertilized wet soil), you will have maximum radiation under lower elevation. It is likely that in the end the produced field under relative low elevation will be higher than that from a horizontal dipole. Elevated radials give less ground loss. At high frequency, the relative epsilon becomes important. A High dielectric constant and low conductivity may result in less loss. At high frequency a larger part of the current goes to the capacitance of the ground instead of the loss resistance (in a parallel equivalent circuit). See it as having a low loss dielectric under your antenna. Hope this help you a bit. Best regards, Wim PA3DJS www.tetech.nl please remove abc when replying. |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Vertical above the ground-plane | Antenna | |||
Effect of raising vertical antenna higher | Antenna | |||
Proximity effect of 2 different vertical antennas | Antenna | |||
effect of metal pipe supporting a vertical cage antenna | Antenna | |||
Ground system for a vertical antenna | Antenna |