Home |
Search |
Today's Posts |
#31
![]() |
|||
|
|||
![]()
Steve Nosko wrote:
"It is as simple as the fact that it is not internally resistance limited----." We are discussing maximum power transfer which by definition is the condition in which all available power is delivered to the load. This condition requires equal resistances in source and load. Maximum power transfer can be found by varying the resistance used as the load until the load resistance is found which generates the most heat. This assumes there is no reactance or other opposition to power other than that of the resistive type in the source and load. Once you`ve found the load which extracts maximum power from the source, measure its resistance. That is also the resistance of your source. In the Class-C amplifier, some of the source resistance it presents to the load is of the lossless variety. Were it all of the dissipative variety, just as much heat would be generated within the amplifier as within the load, UNDER MAXIMUM POWER TRANSFER CONDITIONS. Some of the internal resistance is the lossy kind. The final amplifying devices have almost full on or off states. There`s little transition, and the saturation voltage is low but not zero. The lossless variety of internal resistance comes from an average of the switched-off time of the amplifier. My example presumed a 50-50 spllit between dissipative and lossless resistances in the Class-C amplifier. That made an efficiency of 66.7%. Not bad and not unusual. That`s the way it works, believe it or not. Best regards, Richard Harrison, KB5WZI |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Complex Z0 [Corrected] | Antenna | |||
Derivation of the Reflection Coefficient? | Antenna | |||
The Cecilian Gambit, a variation on the Galilean Defense revisited | Antenna |