![]() |
Efficiency and maximum power transfer
Cecil, W5DXP wrote:
"What is the linear source impedance of a class-C amp?" A conjugate match is necessary for maximum power transfer. A Class C amplifier is not inherently linear. That is disasterous for an already modulated AM signal but it is of no importance to an FM signal. As Richard Fry points out, no tank circuit is required. A low-pass filter to suppress all harmonics is all that is needed for a clean signal. No tuning is required of a tank at the operating frequency. A tank circuit is not selective enough to prevent intermod anyway. When I worked the morning shift at 790 KHz in Houston, and I fired up the transmitter, I would hear 740 KHz`audio coming out of the monitor speaker. They started programming earlier than we did. They were 15 miles away. Our transmitting antenna made a dandy receiving antenna. The received 740 KHz modulated our final amplifier and we rebroadcast it although at a level much lower than our own modulation. Any one listening to 790 KHz who turned up the volume to hear the 740 KHz audio got their ears knocked off when our modulation started. We had high level plate modulation of the final amplifier for our own signal. For the 740 KHz signal the level of modulation was much lower, millivolts not kilovolts. Either program was cleanly modulated on our carrier. The only difference was the enormous difference in modulation levels. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Owen Duffy wrote:
"Most supply authorities would not allow you to connect a capacitive load (a leading PF load),-----." Incorrect. Overexcited synchronous machines are commonly used to correct the power factor causing reduced line current and lower power loss on the a-c power transmission line. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
|
Efficiency and maximum power transfer
"Roy Lewallen" wrote
No mysterious "reverse r-f energy" is needed to explain this well-known and well-understood phenomenon. __________ The quote above reads as though the existence of reverse (reflected) r-f energy is being denied. For skeptics, the link below leads to a field report showing a measurement of the reflection of a narrowband r-f pulse by an analog broadcast TV antenna, back toward the source. The H.A.D. of the sin˛ pulse used represents the shortest transition time that can be accommodated in a ~ 4 MHz transmission channel. Note that the reflected pulse appears some 6.2 µs after the incident pulse, which corresponds to a round trip through the ~1,525 feet of 6" OD, 75 ohm, air pressurized transmission line leading to the antenna in this system. The return pulse amplitude indicates a far-end match (elbow complex + antenna) of about 1.05 VSWR (2.3% reflection). http://i62.photobucket.com/albums/h8...easurement.gif RF (RCA Broadcast Field Engineer 1965-1980) |
Efficiency and maximum power transfer
Richard Harrison wrote:
Cecil, W5DXP wrote: "What is the linear source impedance of a class-C amp?" A conjugate match is necessary for maximum power transfer. Is the class-C amp conjugately matched during the 75% of the cycle when it is off? Is there any such thing as an instantaneous conjugate match? Don't we have to move downstream from non-linear sources for our linear math models to start working? -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
Richard Fry wrote:
"Roy Lewallen" wrote No mysterious "reverse r-f energy" is needed to explain this well-known and well-understood phenomenon. __________ The quote above reads as though the existence of reverse (reflected) r-f energy is being denied. Especially strange since the "reverse r-f energy" is the cause of the impedance responsible for the mismatch problem. If there were no "reverse r-f energy", the impedance causing the mismatch wouldn't even exist. Why is the cause of the offending impedance of no importance? -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
"Cecil Moore" wrote in message ... Richard Harrison wrote: Cecil, W5DXP wrote: "What is the linear source impedance of a class-C amp?" A conjugate match is necessary for maximum power transfer. Is the class-C amp conjugately matched during the 75% of the cycle when it is off? Is there any such thing as an instantaneous conjugate match? Don't we have to move downstream from non-linear sources for our linear math models to start working? -- 73, Cecil http://www.w5dxp.com Richard, its a common myth that Class C amps are non-linear, but the truth of the matter is that although the condition at the input of the pi-network is decidedly non-linear, the energy storage in the pi-network tank circuit isolates the input from the output and the result is a totally linear condition at the output of the pi-network. Evidence proving this is true is that the output of an unmodulated signal at the output of the network is an almost pure sine wave. With a Q of at least 12 the difference between a pure sine wave from a signal generator and that from the pi-network output can not be seen on a dual trace scope with the traces overlapping. I don't know about the energy storage in the filters you mention, but I would assume that if the filter output is a sine wave then the energy storage required to produce a linear output is sufficient. Walt, W2DU |
Efficiency and maximum power transfer
Richard Harrison wrote:
Cecil, W5DXP wrote: "What is the linear source impedance of a class-C amp?" A conjugate match is necessary for maximum power transfer. *in a linear system* |
Efficiency and maximum power transfer
Jim Lux wrote:
"in a linear system" It produces no significant harmonics, so the system is linear. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Cecil, W5DXP wrote:
"Is the class-C amp conjugately matched during the 75% of the cycle it is off?" We must consider the complete cycle. Working with spark ignition systems (Hettering) you may have encountered a "dwell meter". It indicates the % of the time ignition points are closed. When the points are closed, impedance between the meter and the battery is insignificant. The meter if left continuously connected through the points would indicate full-scale. When the points open, their impedance is infinite. Left continuously open, the meter indicates zero on the dwell scale. Dwell is measured while the engine is rotating and the meter is being connected intermittently to the battery through the ignition points. Intermittent opening and closing of the points causes the same scale reading that would be caused by replacing the points with some particular value of fixed resistance (a resistor). The main difference is that no dissipation occurs in the open ignition points and precious little energy is lost in the closed points. Voila! We have produced a dissipationless resistance. The Class C amplifier is a switch which operates in the same manner. The Kettering ignition points have a low-resistance ignition coil primary in series, and the Class-C amplifier has a tuned plate circuit in series, but both are being switched on and off repeatedly. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Walt, W2DU wrote:
"I don`t know about the energy storage in the filter you mention, but I would assume that if the filter output is a sine wave then the energy storage required to produce a linear output is sufficient." As a former FCC official, Walt knows their regulations sharply limit harmonic content of FM broadcast carrier frequencies. A sine wave must be pure, otherwise it has harmonic content (not allowed). Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Richard Harrison wrote:
Cecil, W5DXP wrote: "Is the class-C amp conjugately matched during the 75% of the cycle it is off?" Matched across what boundary? from output pi network to load? From active device to pi network? I'd venture that between active device and pi network, there isn't a conjugate match, at any given instant, and perhaps not even considered over the entire cycle (without resorting to some things like "apparent impedance" which doesn't have a real clean definition). In order to provide a true "conjugate match" to a device that is changing state, the load must also be changing state: i.e. the match is single valued, for any Zload, there is a single Zmatch that maximizes power transfer; except perhaps for some trivial cases, like Z=zero or infinity, but in such cases, the load doesn't dissipate ANY power, so what is there to maximize. Furthermore, if one looks at situations where you have, for instance, a very low source impedance (a stiff voltage bus) or a very high source impedance (a constant current source), power transfer is maximized to a given load impedance when the reactive components are conjugate. In such a case, the source and load resistances are not equal. One might look at http://p1k.arrl.org/~ehare/temp/conj...ch_theorum.pdf http://mysite.orange.co.uk/g3uur/index.html We must consider the complete cycle. Working with spark ignition systems (Hettering) you may have encountered a "dwell meter". It indicates the % of the time ignition points are closed. When the points are closed, impedance between the meter and the battery is insignificant. The meter if left continuously connected through the points would indicate full-scale. When the points open, their impedance is infinite. Left continuously open, the meter indicates zero on the dwell scale. Dwell is measured while the engine is rotating and the meter is being connected intermittently to the battery through the ignition points. Intermittent opening and closing of the points causes the same scale reading that would be caused by replacing the points with some particular value of fixed resistance (a resistor). The main difference is that no dissipation occurs in the open ignition points and precious little energy is lost in the closed points. Voila! We have produced a dissipationless resistance. I would say "apparent resistance".. the "conjugate match" and any other linear circuit analysis can't necessarily be "averaged". Something like Kirchoff's current law or voltage law (or Ohm's law, for that matter) has to be true at any instant. The challenge faced by folks faced with analyzing "real" circuits is that you have to be careful about how you turn a circuit that is likely time-varying AND nonlinear into a linearized approximation. For instance programs like SPICE's transient analysis uses linear circuit theory (via matrix analysis) in combination with an iterative differential equation solver, and tries to treat the circuit as linear at a given instant. (granted, newer versions of SPICE and its ilk are a bit more sophisticated, since they can handle nonlinear terms in the matrix). The Class C amplifier is a switch which operates in the same manner. The Kettering ignition points have a low-resistance ignition coil primary in series, and the Class-C amplifier has a tuned plate circuit in series, but both are being switched on and off repeatedly. Complicated substantially by the fact that the active device in a RF amplifier generally doesn't act as an ideal switch. So the piecewise linearization you describe isn't totally applicable. For instance, a BJT acts like a constant current source if base drive is fixed, but in RF circuits, the base drive isn't fixed. In FET circuits you worry about the gate capacitance. This is why there are all sorts of variants of SPICE modified for switching power supplies. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
|
Efficiency and maximum power transfer
Richard Harrison wrote:
Jim Lux wrote: "in a linear system" It produces no significant harmonics, so the system is linear. I'm not trying to be difficult, but I just resurrected the Fourier equation for the output of a class-B amplifier. It is: i = 0.318Im + 0.500Im*sin(A) - 0.212Im*cos(2A) - 0.0424Im*cos(4A) - ... The second harmonic is 42% of the amplitude of the fundamental frequency at the plate of the tube amp. -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
"Cecil Moore" wrote in message ... Richard Harrison wrote: Jim Lux wrote: "in a linear system" It produces no significant harmonics, so the system is linear. I'm not trying to be difficult, but I just resurrected the Fourier equation for the output of a class-B amplifier. It is: i = 0.318Im + 0.500Im*sin(A) - 0.212Im*cos(2A) - 0.0424Im*cos(4A) - ... The second harmonic is 42% of the amplitude of the fundamental frequency at the plate of the tube amp. -- 73, Cecil http://www.w5dxp.com OK Cecil, if the 2nd harmonic is 42% of the amplitude of the fundamental at the plate of the tube, can you determine the amplitude of the 2nd harmonic at the output of a pi-network having a Q of 12? Walt, W2DU |
Efficiency and maximum power transfer
"Cecil Moore" wrote in message ... Richard Harrison wrote: Jim Lux wrote: "in a linear system" It produces no significant harmonics, so the system is linear. I'm not trying to be difficult, but I just resurrected the Fourier equation for the output of a class-B amplifier. It is: i = 0.318Im + 0.500Im*sin(A) - 0.212Im*cos(2A) - 0.0424Im*cos(4A) - ... The second harmonic is 42% of the amplitude of the fundamental frequency at the plate of the tube amp. -- 73, Cecil http://www.w5dxp.com OK Cecil, if the 2nd harmonic is 42% of the amplitude of the fundamental at the plate of the tube, can you determine the amplitude of the 2nd harmonic at the output of a pi-network having a Q of 12? Walt, W2DU |
Efficiency and maximum power transfer
Walter Maxwell wrote:
OK Cecil, if the 2nd harmonic is 42% of the amplitude of the fundamental at the plate of the tube, can you determine the amplitude of the 2nd harmonic at the output of a pi-network having a Q of 12? I think I understand ideal class-A operation pretty well. What I am trying to understand is: In class-B operation, if the frequency of interest is made up of less than 1/2 of the current through the amplifier tube, is more than 1/2 of the current not conjugately matched? -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
"Richard Fry" wrote
Note that the reflected pulse appears some 6.2 µs after the incident pulse, ... _________ Correction: the reflected pulse appears 3.1 µs after the incident pulse (the time base was 0.5 µs/cm). The rest of the statements there remain valid. RF |
Efficiency and maximum power transfer
Jim Lux wrote:
"Matched across what boundary?" Where there is a conjugate match in the transmitter-antenna system, it exists at every pair of terminals. That is, the impedances looking in opposite directions are conjugates. The resistive parts of the impedance are equals and the reactances looking in opposite directions are opposites of each other. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Richard Harrison wrote:
Where there is a conjugate match in the transmitter-antenna system, it exists at every pair of terminals. Quoting w2du's web page: “The Conjugate Theorem also shows that in a sequence of matching networks it is necessary to match at only one junction *if the networks are non-dissipative*. In actual practice, since there is usually some dissipation, it is frequently desirable to adjust at more than one point.” -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
Owen Duffy wrote:
"The Class C amplifier is a switch... If you say it enough times, will it become true?" True is true no matter what anyone says. I`ve never seen Terman misspeak. On page 255 of his 1955 opus Terman wrote: "---the Class C amplifier is adjusted so the plate current flows in pulses that last less than half a cycle." On page 450 he wrote: "The high efficiency of the Class C amplifier is a result of the fact that plate current is not allowed to flow except when the instantaneous voltage drop across the tube is low; i.e. Eb supplies energy to the amplifier only when he largest portion of the energy will be absorbed by the tuned circuit." Sounds like a switch to me. When switched on, voltage drop across the tube is low. When switched off, voltage drop across the tube is Eb, but since current is zero, no power is lost at that instant in the tube. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Cecil, W5DXP wrote:
"Quoting W2DU`s web page:" Sure hope Walt finds a publisher soon for his latest edition of "Reflections". Web TV (a Microsoft company) doesn`t allow me to read pdf. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Richard Harrison wrote:
Cecil, W5DXP wrote: "Quoting W2DU`s web page:" Sure hope Walt finds a publisher soon for his latest edition of "Reflections". Web TV (a Microsoft company) doesn`t allow me to read pdf. Best regards, Richard Harrison, KB5WZI Richard, try this: Let Google translate it from PDF to HTML for you. Do a Google search for "w2du reflections chapter 19A". One of the first entries will be a hit at http://w2du.com/r3ch19a.pdf . Under the Google entry for this, carefully look for the words: "File Format: PDF/Adobe Acrobat - View as HTML" The words 'View as HTML' will be linked to Google's HTML translation of the PDF. The translation isn't pretty, but the essentials are there. You will have to fill in some of the blanks yourself. Posting this as well for anyone else experiencing this problem. Jim, K7JEB |
Efficiency and maximum power transfer
Richard Harrison wrote:
Cecil, W5DXP wrote: "Quoting W2DU`s web page:" Sure hope Walt finds a publisher soon for his latest edition of "Reflections". Web TV (a Microsoft company) doesn`t allow me to read pdf. Do a Google search for NIST definition of "conjugate match" One of the first entries will be: [PDF] Chapter 01 File Format: PDF/Adobe Acrobat - *View as HTML* Quoting from Robert W. Beatty, NIST, Microwave Mismatch Analysis, (Ref 120):. 1) Conjugate match—The condition for maximum power absorption by a load, in ... w2du.com/Appendix09.pdf - Similar pages Click on View as HTML and the section I quoted should appear in HTML format. -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
|
Efficiency and maximum power transfer
I wrote:
"When switched-off, voltage drop across the tube is Eb" Owen Duffy wrote: "That is wrong." Yes as a general statement, that is wrong. The instantaneous drop across the tube is the sum of Eb and EL, the signal voltage across the load. Terman shows this in Fig. 13-1(b) on page 449 of his 1955 opus. Fig. 13-1(e) shows the plate current pulse which is less than 180 degrees in duration as the tube is biased beyond cut-off. My switch analogy is imperfect but good enough to exemplify dissipationless resistance as a part of the output impedance of a Class C amplifier. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
Richard Harrison wrote:
My switch analogy is imperfect but good enough to exemplify dissipationless resistance as a part of the output impedance of a Class C amplifier. Well, there are mechanical switches, digital switches, and analog switches. I suspect a class-C amp falls under the heading of an analog switch. -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
On Jun 6, 9:15*pm, Walter Maxwell wrote:
Since E/I is simply a ratio, R is also a ratio. And we know that a ratio cannot dissipate power, or turn electrical energy into heat, thus the output resistance R is non-dissipative. I have made many measurements that prove this. Hi Walt, R is by definition a physical "property of conductors which depends on dimensions, material, and temperature". So if we multiply both sides of our "ratio" equation by I^2 to convert to power we get V*I = I^2*R. Given that V, I, and R are all non-zero, why would you ask us to believe that I^2*R and V*I could be zero? It's true that V^2/R is a ratio. And I guess it's probably also true that the equation itself doesn't dissipate power. But what would you have us believe that that is supposed to prove? 73, Jim AC6XG |
Efficiency and maximum power transfer
(Richard Harrison) wrote in news:23000-
: Jim Lux wrote: "in a linear system" It produces no significant harmonics, so the system is linear. That is a new / unconventional definition of 'linear'. The term is usually used in this context to mean a linear transfer characteristic, ie PowerOut vs PowerIn is linear. Considering a typical valve Class C RF amplifier with a resonant load: Conduction angle will typically be around 120°, and to achieve that, the grid bias would be around twice the cutoff voltage. If you attempted to pass a signal such as SSB though a Class C amplifier that was biased to twice the cutoff value, there would be no output signal when the peak input was less than about 50% max drive voltage, or about 25% power, and for greater drive voltage there would be output. How could such a transfer characteristic be argued to be linear? Owen |
Efficiency and maximum power transfer
|
Efficiency and maximum power transfer
wrote:
R is by definition a physical "property of conductors which depends on dimensions, material, and temperature". That's only one definition. From "The IEEE Dictionary", the above is definition (A). Definition (B) is simply "the real part of impedance" with the following Note: "Definitions (A) and (B) are not equivalent but are supplementary. In any case where confusion may arise, specify definition being used." Definition (B) covers Walt's non-dissipative resistance. A common example is the characteristic impedance of transmission line. In an ideal matched system V^2/Z0, I^2*Z0, or V*I is the power being transferred under non-dissipative conditions. -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
wrote in message ... On Jun 6, 9:15 pm, Walter Maxwell wrote: Since E/I is simply a ratio, R is also a ratio. And we know that a ratio cannot dissipate power, or turn electrical energy into heat, thus the output resistance R is non-dissipative. I have made many measurements that prove this. Hi Walt, R is by definition a physical "property of conductors which depends on dimensions, material, and temperature". So if we multiply both sides of our "ratio" equation by I^2 to convert to power we get V*I = I^2*R. Given that V, I, and R are all non-zero, why would you ask us to believe that I^2*R and V*I could be zero? It's true that V^2/R is a ratio. And I guess it's probably also true that the equation itself doesn't dissipate power. But what would you have us believe that that is supposed to prove? 73, Jim AC6XG Hello Jim, I don't understand how my statement in the email above indicates that I^2*R and V*R could be zero. The simple ratio of E/I is not zero, yet it defines a resistance that is non-dissipative because a ratio cannot dissipate power. Walt |
Efficiency and maximum power transfer
Walter Maxwell wrote:
I don't understand how my statement in the email above indicates that I^2*R and V*R could be zero. The simple ratio of E/I is not zero, yet it defines a resistance that is non-dissipative because a ratio cannot dissipate power. "The IEEE Dictionary" is careful to differentiate between an E/I ratio equaling an impedance vs an "impedor" consisting of physical components. -- 73, Cecil http://www.w5dxp.com |
Efficiency and maximum power transfer
On Jun 13, 10:43*pm, Alan Peake wrote:
wrote: * On Jun 6, 9:15 pm, Walter Maxwell wrote: * * Since E/I is simply a ratio, R is also a ratio. And we know that a * ratio cannot dissipate power, or turn electrical energy into heat, * thus the output resistance R is non-dissipative. I have made many * measurements that prove this. * * * Hi Walt, * * R is by definition a physical "property of conductors which depends * on dimensions, material, and temperature". *So if we multiply both * sides of our "ratio" equation by I^2 to convert to power we get V*I = * *I^2*R. *Given that V, I, and R are all non-zero, *why would you ask * us to believe that I^2*R and V*I could be zero? *It's true that V^2/R * is a ratio. *And I guess it's probably also true that the equation * itself doesn't dissipate power. *But what would you have us believe * that that is supposed to prove? * * 73, Jim AC6XG I always believed that a ratio was a comparative measure between like units - e.g. forward voltage to reverse voltage, output power to input power etc. Voltage to current is not a ratio. V/I has dimensions of resistance - ratios are dimensionless. Alan Good point. You may be right. 73 de jk |
Efficiency and maximum power transfer
On Jun 14, 8:46*am, "Walter Maxwell" wrote:
I don't understand how my statement in the email above indicates that I^2*R and V*R could be zero. The simple ratio of E/I is not zero, yet it defines a resistance that is non-dissipative because a ratio cannot dissipate power. Walt Hi Walt - If E and I are not zero, then E*I is not zero. But you are correct that the equations themselves do not dissipate power. :-) Resistors do, however. If there isn't an actual resistor located where you make your measurement, then of course there's no power being dissipated there. 73, ac6xg |
Efficiency and maximum power transfer
Alan Peake wrote:
"V/I has dimensions of resistance - ratios are dimensionless." Yes, until we name them. Cycles / seconds is now called Hertz. My electronics dictionary defines ratio - "The value obtained by dividing one number by another." Simple and no qualifications. From Newton: Acceleration = force / mass You must pick the right units or use constants to make the numbers work. Some people are persuaded that resistance = loss. Not so at all. Resistance is just a name given to the ratio of voltage to current. A perfect reactance produces a voltage drop but no power is lost. A transmission line can be lossless enough to qualify and have a Zo = sq rt of L/C. Reg Edwards used to say that if your perfect line were long enough you could measure its Zo with an ohmmeter. Reg was right because no reflection would ever return to change the current supplied by the ohmmeter. Free-space has a lossless Zo of 120 pi (or 377 ohms) according to page 326 of Saveskie`s "Radio Propagation Handbook". This is a ratio which is related to volts and amps but is actually the ratio of the electric field strength to the magnetic field strength in an EM wave. The volts and amps are in phase so it has the units of a pure resistance. Best regards, Richard Harrison, KB5WZI |
Efficiency and maximum power transfer
"Owen Duffy" wrote in message ... (Richard Harrison) wrote in news:23000- : Jim Lux wrote: "in a linear system" It produces no significant harmonics, so the system is linear. That is a new / unconventional definition of 'linear'. The term is usually used in this context to mean a linear transfer characteristic, ie PowerOut vs PowerIn is linear. Considering a typical valve Class C RF amplifier with a resonant load: Conduction angle will typically be around 120°, and to achieve that, the grid bias would be around twice the cutoff voltage. If you attempted to pass a signal such as SSB though a Class C amplifier that was biased to twice the cutoff value, there would be no output signal when the peak input was less than about 50% max drive voltage, or about 25% power, and for greater drive voltage there would be output. How could such a transfer characteristic be argued to be linear? Owen Owen, 'linear transfer characteristic' isn't the only context for the use of the word 'linear'. Even though the input circuit of a Class C amplifier is non-linear, the output is linear due to the energy storage of the tank circuit that isolates the input from the output, therefore, the output is linear. Proof of this is that the output signal is a sine wave. In addition, the voltage and current at the output terminals of the pi-network are in phase. Furthermore, the ratio E/I = R appearing at the network output indicates that the output source resistance R is non-dissipative, because a ratio cannot dissipate power. This resistance R is not a resistor. Walt |
Efficiency and maximum power transfer
wrote in message ... On Jun 14, 8:46 am, "Walter Maxwell" wrote: I don't understand how my statement in the email above indicates that I^2*R and V*R could be zero. The simple ratio of E/I is not zero, yet it defines a resistance that is non-dissipative because a ratio cannot dissipate power. Walt Hi Walt - If E and I are not zero, then E*I is not zero. But you are correct that the equations themselves do not dissipate power. :-) Resistors do, however. If there isn't an actual resistor located where you make your measurement, then of course there's no power being dissipated there. 73, ac6xg Jim, have you reviewed the new section Chapter 19A that appears on Cecil's website that he uploaded on June 7? It appears there posted as 'Chapter 19A from Reflections 3'. If you haven't reviewed it I urge you to do so, especially the last portion where I report the measurements I made with a complex impedance loading the amplifier. These measurements prove two things: 1) that the output resistance of the amp is non-dissipative, and 2) that no reflected energy reaches the amp tube, and in fact the measurements show that the tube doesn't even see the reflected power. When you see the numbers and understand the procedure I used in obtaining them you will be hard pressed to disagree with the results. Walt, W2DU |
Efficiency and maximum power transfer
"Alan Peake" wrote in message ... wrote: On Jun 6, 9:15 pm, Walter Maxwell wrote: Since E/I is simply a ratio, R is also a ratio. And we know that a ratio cannot dissipate power, or turn electrical energy into heat, thus the output resistance R is non-dissipative. I have made many measurements that prove this. Hi Walt, R is by definition a physical "property of conductors which depends on dimensions, material, and temperature". So if we multiply both sides of our "ratio" equation by I^2 to convert to power we get V*I = I^2*R. Given that V, I, and R are all non-zero, why would you ask us to believe that I^2*R and V*I could be zero? It's true that V^2/R is a ratio. And I guess it's probably also true that the equation itself doesn't dissipate power. But what would you have us believe that that is supposed to prove? 73, Jim AC6XG I always believed that a ratio was a comparative measure between like units - e.g. forward voltage to reverse voltage, output power to input power etc. Voltage to current is not a ratio. V/I has dimensions of resistance - ratios are dimensionless. Alan Alan, I disagree with you when you say that 'voltage to current' is not a ratio. IMHO, your are definine 'ratio' to narrowly. Below is a quote from Google: Ratio From Wikipedia, the free encyclopedia .. Learn more about using Wikipedia for research .Jump to: navigation, search This article is about the mathematical concept. For the Swedish institute, see Ratio Institute. For the academic journal, see Ratio (journal). This article or section is in need of attention from an expert on the subject. Please help recruit one or improve this article yourself. See the talk page for details. Please consider using {{Expert-subject}} to associate this request with a WikiProject The ratio of width to height of typical computer displays A ratio is a quantity that denotes the proportional[citation needed] amount or magnitude of one quantity relative to another. Ratios are unitless when they relate quantities of the same dimension. When the two quantities being compared are of different types, the units are the first quantity "per" unit of the second - for example, a speed or velocity can be expressed in "miles per hour". If the second unit is a measure of time, we call this type of ratio a rate. Fractions and percentages are both specific applications of ratios. Fractions relate the part (the numerator) to the whole (the denominator) while percentages indicate parts per 100. Note, Alan, the expression "When the two quantities being compared are different types...... Walt, W2DU |
All times are GMT +1. The time now is 10:28 AM. |
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
RadioBanter.com