Home |
Search |
Today's Posts |
#35
![]() |
|||
|
|||
![]()
Owen Duffy wrote:
The most widely accepted test for linearity (Vout/Vin) of an RF PA is the 'two tone test', where the drive is a complex waveform (the sum of two equal amplitude sine waves quite close in frequency) and at least some of the distortion products due to third order and fifth order etc transfer terms appears in-band in the output after all output filtering, and where they can be reliably compared in amplitude to the desired signals. A Class C RF PA will not appear to be linear under such a test at any drive level. Actually, in modern systems with very complex signals, there are more meaningful tests like noise power ratio with a notch that look for spectral regrowth. The two tone test has the advantage of being moderately easy to perform for middling performance amplifiers/devices. But if you're looking for very high performance, such things as generating the two tones without one generator interfering with the other get to be challenging. I suspect that the issue of transfer linearity is a red herring to your proposition about the Thevenin equivalent of an RF PA, but if you do depend on arguing that the transfer characteristic of a Class C RF PA is linear, I think you are on shaky ground. I don't know that the concept of a Thevenin equivalent (a linear circuit theory concept) really has applicability to "box level" models, except over a very restricted range, where one can wave one's hands and ignore the nonlinearities as irrelevant to the question at issue. Sure, over a restricted dynamic range and bandwidth and restricted class of input signals, a Class C (or class E or Class F or E/F1, or a fancy EER system) can be adequately modeled as a linear ideal amplifier. The real question is what is the value of that model. If the model provides conceptual understanding of some underlying problem, great. For instance, it might help with a link budget. If the model helps design a better amplifier, great. The model might allow prediction of behavior; so that you can, for instance, detect a fault by the difference between model and actual observation, as Richard mentioned with the harmonic energy detector. Owen |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Transfer Impedance(LONG) | Shortwave | |||
Efficiency of Power Amplifiers | Antenna | |||
Matching , Power Transfer & Bandwidth | Antenna | |||
max power transfer theorem | Antenna |