| Home |
| Search |
| Today's Posts |
|
#11
|
|||
|
|||
|
As a newcomer to the group I'm hesitant to join a discussion which has
been running for almost 200 postings, and where the protagonists understand the topic in much greater depth than I do. But here goes .... My starting assumption is that EZNEC can model a helical inductor reasonably accurately, with the exception of the increase in AC resitance caused by proximity effects. If I take an EZNEC model of a coil - 40 turns #14 wire, 6" diameter, 12" long - I discover it has a characteristic impedance of about 2550 ohms at a self-resonant frequency of around 6.1 MHz. If I use it as the base loading coil for a short vertical antenna with a 6ft whip above it, I notice that EZNEC shows a difference in the current at the top of the coil compared with the bottom of about 0.69:1, and a resonant frequency of 3.79MHz. I then look to see which of the various models might reasonably predict the values observed in the EZNEC modelling. Clearly, a simple lumped-element inductor doesn't get close. I've read various web pages and postings which argue qualitatively that things like "distributed capacitance" might explain some of the observations, but as yet I've seen no quantitative analysis which attempts to predict the numbers. In contrast, I look at the work of Corum & Corum and of G3YNH who insist that "coils are best regarded as transmission lines", and I get quantitative results which closely match the EZNEC results. For my example coil, I get a self resonant frequency of 6.3MHz (cf 6.1MHz), a characteristic impedance of 2792 ohms (cf 2550 ohms) and an Iout/Iin ratio of 0.72 (cf 0.69) Not only that, the transmission line model predicts an inductive reactance very close to that needed for antenna resonance at 3.79 MHz I'm a simple soul, and I don't pretend to understand all the maths involved; I merely observe that the transmission line approach delivers "hard numbers" that closely match those predicted by EZNEC. I've yet to see another model get close. So, until I do, I guess I have to favour the approach of Corum & Corum, G3YNH et al. If someone can show me similarly accurate results from an approach based on a lumped-element model, I'd be interested to see them. Steve G3TXQ |
| Thread Tools | Search this Thread |
| Display Modes | |
|
|
Similar Threads
|
||||
| Thread | Forum | |||
| Dish Network "500" dish with two LNBs | Homebrew | |||
| Kenwood reflector | General | |||
| Vet. with a reflector | Antenna | |||
| Reflector for Hammarlund | Boatanchors | |||
| Reflector for Hammarlund | Boatanchors | |||