Home |
Search |
Today's Posts |
#9
![]() |
|||
|
|||
![]()
K1TTT wrote:
On May 11, 8:30 pm, Art Unwin wrote: When an array is in equilibrium then Maxwell's equations are exact. maxwell's equations are ALWAYS exact, it is digital models that are inexact and have limitations due to the approximations made and the numeric representations used. Inexactness of the solution isn't because the method is digital. The field equations solved by the digital methods simply can't be solved by other methods, except for a relatively few very simple cases. Many non-digital methods were developed over the years before high speed computers to arrive at various approximate solutions, but all have shortcomings. For example, I have a thick file of papers devoted to the apparently simple problem of finding the input impedance of a dipole of arbitrary length and diameter. Even that can't be solved in closed form. Solution by digital methods is vastly superior, and is capable of giving much more accurate results, than solution by any known method. Roy Lewallen, W7EL |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
FA: Philbrick GAP/R Model K2-W Early Computer Tube Op-Amp | Boatanchors | |||
FA: Philbrick GAP/R Model K2-W Early Computer Tube Op-Amp | Boatanchors | |||
FA: Philbrick GAP/R Model K2-W Early Computer Tube Op-Amp | Boatanchors | |||
FA: Philbrick GAP/R Model K2-W Early Computer VacuumTube Op-Amp | Boatanchors | |||
FA: Radio Shack Model 100 laptop computer ++ | Equipment |