Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On 10 jun, 01:45, lu6etj wrote:
On 9 jun, 23:55, Keith Dysart wrote: On Jun 9, 2:37*pm, lu6etj wrote: On 9 jun, 13:23, Cecil Moore wrote: On Jun 9, 8:26*am, Keith Dysart wrote: 6. Keith, using basic circuit theory, reflection coefficients and * *analysis in the time domain, shows that Cecil's conclusions do not * *align with expected behaviours. I must have missed the posting where you proved RF waves do not obey the *average* power density (irradiance) equation from "Optics", by Hecht. Neither Hecht nor I have ever said anything about instantaneous virtual power except that it is "of limited usefulness". Nothing you have posted about instantaneous virtual power has disagreed or disproved anything that I have said about *average* power where I simply quoted Hecht. I suspect that your instantaneous virtual power must necessarily obey the conservation of energy principle but I am not going to waste my time trying to prove it. Hecht and I seem to agree 100% that *average* energy flow obeys the laws of physics. May I suggest that you read "Optics", by Hecht and post anything with which you disagree. I, and others, stopped taking you seriously when you said that an equal magnitude of the forward Poynting vector and the reflected Poynting vector proves that zero energy is crossing the boundary (without adding that it is zero NET energy). You have probably ruined your technical reputation with such nonsense. -- 73, Cecil, w5dxp.com Good evening. (sunny and cold day, here) Superposition works just fine for voltage and current, And electromagnetic waves... We also study TL in physics with a electromagnetic model (E-H fields). Yes, of course. but is mostly invalid for power. Attempting to apply superposition to power will lead to inaccurate results. Yes. As Cecil pointed, power not apply to superposition because it is a scalar magnitude. Not quite. It does not apply to power because it does apply to voltages. If one doubles the voltage, one gets 4 times the power. There is no way to make superposition (which is simply addition) simultaneously work for voltage and power. As for scalars... Superposition works quite fine for circuit analysis with scalars. I am curious as to what I wrote on the web page that suggested disagreement with the superposition principle. Because my interpretation of this sentences on the wave page: What happens when the signals from two identical generators at each end of a transmission line collide in the middle? Term "collide" without quotes suggest (to me) interaction (as particles). I learnt travelling waves do not "collides" in space (or linear mediums), simply they crossing each other (as ghosts).( I do not be sure about this translation) or, quoting UCLA web page note, "Wave maintain their integrity upon overlapping (without themselves being permanently changed)". Superposition is a mathematical trick that allows the solution of the problem. It does not mean that the pulses pass through each other, though that is one of the visualizations. Consider a point on the line where the current is always 0, no electrons cross this point nor does any energy. Did the pulses cross through such a point? The voltage envelope appears to, but does that mean the pulse did? Does energy cross the midpoint of the transmission line? ..... The plot shows that the voltage in the middle of the transmission line is always zero (that's femtoVolts on the left, not a bad representation for 0 in a simulation). Recalling that Power = (Volts times Amps), if the voltage is always 0, then there is no power. With no power, no energy is crossing the middle of the transmission line. My interpretation of last sentence (and reading technical controversy with Cecil and K1TT in thread) make me think that it does not match to superposition principle (except when there are not any travelling waves in system, of course). (I do not considered here spice application to travelling wave model issues). Please tell me if you agree with Java applets linked -applied to TL travelling waves- to clarify my understanding of your proposition. I have no issues with the applets. They show voltage waves crossing each other and appropriately use superposition to derive the results. Like many optical illusions, there are multiple ways to visualize what is happening. The second one for example can also be seen as the two pulses bouncing off of each other. The response would be identical if the transmission line was cut at the point of collision. These two simulations do not claim to show energy moving all the way down the line in both directions, nor do they superpose powers. So they look fine. ...Keith- Ocultar texto de la cita - - Mostrar texto de la cita -- Ocultar texto de la cita - - Mostrar texto de la cita - Hello Keith: I believe I just understand where is the problem *You are talking about "Superposition Theorem" of circuit theory and we are talking about "Superposition pinciple of waves". There are not the same stuff. Please read this page from "Physics for scientists and engineers with modern physics" book to aliviate my translation :) http://books.google.com.ar/books?id=...01&lpg=PA501&d... Uf, what a large link!! If do not works search on page 501 of Google books with the appointed title. Note = "Two travelling waves can pass trough each other without being destroyed or even altered". (Op. Cit.). (Please pay attention to pond example). The applet there do not represent an opticall illusion, You can experiment with different shape opposite end launched pulses in a rope to verify that do not collide but pass through each other. It is a usual student laboratory work on applied physics. 73 Miguel ghezzi LU6ETJ PS: Yes Richard I live outside of Buenos Aires city. I hope you have been welcome on your visit to Argentine... and... what do you think of our beautiful girls, ah? ;D- Ocultar texto de la cita - - Mostrar texto de la cita - Before I forget... Here is early mornig and I am ready for bed (I'm nocturnal habits). I want give a QSL to Cecil's comment on Maxwell article and Joe's example in CC. Also, noblesse oblige, I recall that Cecil make this comment in a very early post in this thread: Yes, standing waves are hard to visualize, but there is indeed same- cycle interference involving forward waves and reflected waves. There is a certain delay from the source signal to the load and back that can be calculated if one chooses. The wave reflection model is closer to Maxwell's equations than is the lumped-circuit model where EM waves propagate instantaneously. Pointing to differences between lumped constants circuit theory models (superposition theorem) and TL issues. I aknowledge his linked page = http://www.google.com/url?sa=D&q=htt...06V-3Vix1MXnrA where it said: "There are no standing waves on a lumped element circuit component. (In fact, lumped-element circuit theory inherently employs the cosmological presupposition that the speed of light is infinite, as every EE sophomore should know. See, e.g., - Electric Circuits, by J.W. Nilsson, Addison-Wesley, 1983, p. 3.)" Probabily Cecil had in mind this controversy when I submitted my question to this newsgroup. He will correct me if I am wrong. Thank you very much, and now, I am go to ZZZZZZZ...! Miguel |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Chapter 19A from "Reflections III" - Step 9 response | Antenna | |||
Chapter 19A from "Reflections III" - Step 8 response | Antenna | |||
Chapter 19A from "Reflections III" - Step 7 response | Antenna | |||
Chapter 19A from "Reflections III" - Step Reviews Overview | Antenna | |||
Use "Tape Out" Or "Ext Speaker" Output For PC's Line-In ? And, acars question | Scanner |