Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On Jun 8, 3:47*am, Richard Clark wrote:
On Sun, 6 Jun 2010 14:21:16 -0700 (PDT), Keith Dysart wrote: The 100W forward and 50W reflected have no relation to actual powers From MECA, makers of Isolators - their application: The isolator is placed in the measurement path of a test bench between a signal source and the device under test (DUT) so that any reflections caused by any mismatches will end up at the termination of the isolator and not back into the signal source. This example also clearly illustrates the need to be certain that the termination at the isolated port is sufficient to handle 100% of the reflected power should the DUT be disconnected while the signal source is at full power. If the termination is damaged due to excessive power levels, the reflected signals will be directed back to the receiver because of the circular signal flow. ... MECA offers twenty-four models of isolators and circulators in both N and SMA-female connectors with average power ratings from 2 - 250 watts. Good day Richard, You have located several examples from reputable vendors where the behaviour of directional couplers is described in terms of power in a forward and reflected wave. This model of behaviour works within its limits and allows for convenient computation and prediction of the behaviour. But all of these papers have the appropriate discipline and do not ask the question "where does the reflected energy go?" which is good, for this exceeds the limits of the model. As soon as one assigns tangible energy to the reflected wave, it becomes reasonable to ask for an accounting of this energy and the model is incapable of properly accounting for the energy. Following this weakness back through the model, the root cause is the attempt to assign tangible energy to the reflected wave. Think of it as a reflected voltage or current wave and all will be well, but assign power to it and eventually incorrect conclusions will be drawn. For those who understand this, and know that "where did the reflected energy go?" is an invalid question, using the power model within its limits will not cause difficulties. But for those who are not careful, great difficulties arise and a lot of fancy dancing is offered to work around the difficulties, unsuccessfully. Just for fun, here is a simple example. 100V DC source, connected to a 50 ohm source resistor, connected to 50 ohm transmission line, connected to a 50 ohm load resistor. Turn on the source. A voltage step propagates down the line to the load. The impedances are matched, so there are no reflections. The source provides 100W. 100W is dissipated in the source resistor. 100W is dissipated in the load resistor. Energy moves along the transmission line from the source to the load at the rate of 50W. All is well. Disconnect the load. A voltage step propagates back along the line from the load to the source. In front of this step current continues to flow. Behind the step, the current is 0. When the step reaches the source there is no longer any current flowing. The source is no longer providing energy, the source resistor is dissipating nothing, and neither is the load resistor. Proponensts of the power model claim that energy is still flowing down the line, being reflected from the open end and flowing back to the source. Since the source is clearly no longer providing energy, great machinations are required to explain why the reflected 'energy' is re-reflected to provide the forward 'energy'. But really, does anyone believe that a length of transmission line, charged to 100V voltage with zero current flowing, is actually simultaneously transporting energy in both directions? For even more fun, replace the ideal conductors in the transmission line with some lossy conductors. How much of the reflected and re-reflected energy flowing up and down the line will be dissipated in the conductors? Remember that the current is zero, everywhere along the line. ....Keith |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Reflected Energy | Antenna | |||
Reflected power ? | Antenna |