Home |
Search |
Today's Posts |
#23
![]() |
|||
|
|||
![]()
Walter Maxwell wrote:
Cecil, at this point I'm not clear what's happening in your above example. Where and what is the phase reference for these two waves? It appears to me that the reference phase must be that of the source wave, because the voltage and current in both rearward traveling waves are 180 degrees out of phase. Educate me on how the cancellation takes place and how the energy reverses direction. J. C. Slater explains how the cancellation takes place. "The method of eliminating reflections is based on the interference between waves. Two waves half a wavelength apart are in opposite phases, and the sum of them, if their amplitudes are numerically equal, is zero. The fundamental principle behind the elimination of reflections is then to have each reflected wave canceled by another wave of equal amplitude and opposite phase." Note that the above applies to both voltage waves and current waves. Both voltage and current go to zero during complete destructive interference, i.e. both E-field and H-field go to zero during complete destructive interference. It seems to me the out of phase voltage yields a short circuit, while the out of phase current yields an open circuit. How can both exist simultaneously? They can't, and that's my argument. It's easy to understand. If the two rearward- traveling voltages are 180 degrees out of phase then the two rearward-traveling currents MUST also be 180 degrees out of phase, since the reflected current is ALWAYS 180 degrees out of phase with the reflected voltage. If one looks only at the voltages, one will say it's a short-circuit. If one looks only at the currents, one will say it's an open-circuit. And further, what circuit can produce these two waves simultaneously? According to J. C. Slater (and Reflections II, page 23-9) a match point produces these two waves simultaneously, two reflected voltages 180 degrees out of phase and two reflected currents 180 degrees out of phase. In addition, I believe your example has changed the subject. My discourse concerns what occurs to an EM wave when it encounters a short circuit. There is no argument about what happens at a short circuit. What I am saying is that a match point is NOT a short circuit. In this case you're going to have to prove to me that both E and H fields go to zero. IMO it can't happen. J. C. Slater says that's what happens in the above quote. Voltages 1/2WL apart in time cancel to zero. Currents 1/2WL apart in time cancel to zero. So my argument with you, Cecil, is that I maintain the H field doubles on encountering a short circuit, while you maintain that both E and H fields go to zero. What's your answer to this dilemma? My argument is that it is NOT a short circuit. It is "complete destructive interference" as explained in _Optics_, by Hecht where both the E-field and B-field go to zero. J. C. Slater says that the two rearward-traveling voltages are 180 degrees out of phase and the two rearward-traveling currents are 180 degrees out of phase. So whatever happens to the voltage also happens to the current, i.e. destructive interference takes both voltage and current to zero. -- 73, Cecil http://www.qsl.net/w5dxp -----= Posted via Newsfeeds.Com, Uncensored Usenet News =----- http://www.newsfeeds.com - The #1 Newsgroup Service in the World! -----== Over 100,000 Newsgroups - 19 Different Servers! =----- |