| Home |
| Search |
| Today's Posts |
|
|
|
#1
|
|||
|
|||
|
On Tuesday, January 1, 2013 4:07:45 PM UTC-6, Paul Pomes wrote:
I'm looking for a source for a second Winegard HD-6065P antenna that I can stack with my existing one to increase the FM gain. At the moment I can pull in most Mt Wilson stations in San Diego, but only in mono. I realize an amplifier would likely do the job easier, but I think this would be a cool thing to do. Cheers! Paul Pomes, DVM Oh, he Dear John, Stacking 2 HD6065P antennas in the same direction for gain you would mount them 72" apart vertically from boom to boom. The phasing line will be 52" long each +/- 1/8" of each other in length. The phasing lines will feed a CC-7870 coupler to combine the signals. Your single output is now you signal. Cordially, Hans Rabong Tech. Service Manager. Winegard Company |
|
#2
|
|||
|
|||
|
wrote in message ... Dear John, Stacking 2 HD6065P antennas in the same direction for gain you would mount them 72" apart vertically from boom to boom. The phasing line will be 52" long each +/- 1/8" of each other in length. The phasing lines will feed a CC-7870 coupler to combine the signals. Your single output is now you signal. Cordially, Hans Rabong Tech. Service Manager. Winegard Company Unless I am missing something, seems like a waste of antenna and money. I looked for the coupler and found this: "You have the CC-7870 hooked up properly. However this coupler is just like a 2-way splitter hooked up in reverse; in that it will reduce the signal from each antenna by about 30%. " If it is just a 2 way splitter in reverse, there is usually a 3 db loss and all you get with 2 antennas is a gain of 3 db, so you gain nothing over a single antenna with this coupler. To get close to 3 db of gain you need to have a combiner of near zero loss. This is often done by using an odd number of wavelenghts of feedline of a differant impedance and hooking them in parallel to keep the impedance the same. I doubt it would work very well over the while FM band,but may for a small portion of it. I don't know how big the antenna is, but you would be beter off with a single larger antenna, or possiably an amplifier. Maybe an even beter feedline. --- This email is free from viruses and malware because avast! Antivirus protection is active. http://www.avast.com |
|
#3
|
|||
|
|||
|
On Sat, 4 Jan 2014 11:14:23 -0500, "Ralph Mowery"
wrote: Unless I am missing something, seems like a waste of antenna and money. Nope. Stacking antennas works. Analysis of the HD-6066P antenna. http://www.ham-radio.com/k6sti/hd6065p.htm "You have the CC-7870 hooked up properly. However this coupler is just like a 2-way splitter hooked up in reverse; in that it will reduce the signal from each antenna by about 30%. " Since when do we measure signal levels in percent? Decibels would be nice. http://www.solidsignal.com/pview.asp?p=cc7870&d=winegard-cc-7870-2-way-tv-antenna-joiner-coupler-(cc7870) If it is just a 2 way splitter in reverse, there is usually a 3 db loss and all you get with 2 antennas is a gain of 3 db, so you gain nothing over a single antenna with this coupler. Nope. Let's pretend for a moment that there's no loss in the splitter/coupler. If you feed a signal into the common (output) port, the RF power is split equally between the other two (input) ports for a -3dB loss per port. However, if you feed a signal into either ONE of the two (input) ports, all of the signal will appear on the common (output) port. That's because there's about 20dB of isolation between the two (input) ports so that no RF is lost going out the other (input) port. If you have the same signal (in phase) going into both the two (input) ports, they add, producing a combined signal 3dB higher. However, reality requires that the combiner has some loss. Usually, that's about -0.5dB per (input) port for a total loss of 1dB. So, instead of 3dB gain with the stacking arrangement, you will see about 2dB gain. The -0.5dB loss varies across the band and tends to be higher at the extreme frequencies, and less in the middle. To get close to 3 db of gain you need to have a combiner of near zero loss. This is often done by using an odd number of wavelenghts of feedline of a differant impedance and hooking them in parallel to keep the impedance the same. I doubt it would work very well over the while FM band,but may for a small portion of it. Yep. That's the problem. The splitter/combiner is a broadband device, that will work over the entire TV band. 5-1000 MHz is common. Not so if you remove the splitter/combiner and simply parallel the phasing lines. That's a narrow band device that works over a narrow frequency range determined by the length of the phasing lines. That's not what you would want with a TV antenna. However, the HD-6065P is a FM band only Yagi, which might work without the splitter combiner, but as you mention, probably will not work over the entire FM band. I don't know how big the antenna is, but you would be beter off with a single larger antenna, or possiably an amplifier. Maybe an even beter feedline. If you use a Yagi antenna, you would need to approximately double the length of the boom in order to obtain an additional 3dB of gain. The boom on the HD-6065P is 128 inches long. I would hate to see a similar antenna with a boom twice as long. Yagi antennas also tend to be more narrow band than Gray Hoverman antennas for TV use. For FM band only, gain is more important, so a Yagi is probably best. For TV, I prefer a Gray Hoverman. Incidentally, for TV, you can compare the characteristics between both types for real antennas at: http://www.hdtvprimer.com/ANTENNAS/types.html http://www.hdtvprimer.com/ANTENNAS/comparing.html http://www.hdtvprimer.com/antennas/temporarypage.html -- Jeff Liebermann 150 Felker St #D http://www.LearnByDestroying.com Santa Cruz CA 95060 http://802.11junk.com Skype: JeffLiebermann AE6KS 831-336-2558 |
|
#4
|
|||
|
|||
|
"Jeff Liebermann" wrote in message ... On Sat, 4 Jan 2014 11:14:23 -0500, "Ralph Mowery" wrote: Unless I am missing something, seems like a waste of antenna and money. Nope. Stacking antennas works. Analysis of the HD-6066P antenna. http://www.ham-radio.com/k6sti/hd6065p.htm "You have the CC-7870 hooked up properly. However this coupler is just like a 2-way splitter hooked up in reverse; in that it will reduce the signal from each antenna by about 30%. " Since when do we measure signal levels in percent? Decibels would be nice. http://www.solidsignal.com/pview.asp?p=cc7870&d=winegard-cc-7870-2-way-tv-antenna-joiner-coupler-(cc7870) I agree that stacking antennas works, the problem I have is the type of combiner that is used. The 30% was from another web site and I assume it was from someone at the Winegard factory. Not sure why he would say 30% instead of db. Even so 30 % is nowhere near the 3.5 db listed in the ad. From the url you gave, the spec is for 3.5 db which is around what I would think it could be if simple resistors were used. That combiner seems to be made not for stacking antennas for more gain, but to combine several antennas either pointed at differant directions or so a single feedline could be used for a TV and FM antenna or where you hae seperate antennas on the same mast for UHF and VHF. As the specs is for a 3.5 db loss, I assume that is if you hook up two antennas to it, the antennas will have a gain of 3 db at the most, then you go to the combiner and loose 3.5 db for an overall loss of .5 db. That is where I don't see stacking two antennas and using that combiner for more signal strength. I do agree that to get 3 db of gain from the antenna it would need to be about twice as long. I did not look up to antenna to see that it was about 10 feet long already. A 20 foot long antenna would be large, but so would two antennas 10 feet long and seperated by around 5 feet. Maybe not too bad as I have several antennas on booms that are close to 15 feet long stacked about 5 feet apart. Not the best, but it was what I could do for what I had to work with. You can see them on my QRZ.com page under KU4PT. --- This email is free from viruses and malware because avast! Antivirus protection is active. http://www.avast.com |
|
#5
|
|||
|
|||
|
On 1/4/2014 5:40 PM, Ralph Mowery wrote:
snip As the specs is for a 3.5 db loss, I assume that is if you hook up two antennas to it, the antennas will have a gain of 3 db at the most, then you go to the combiner and loose 3.5 db for an overall loss of .5 db. That is where I don't see stacking two antennas and using that combiner for more signal strength. Jeff is correct. Your error is believing the combiner has 3.5db loss. When splitting a signal, you do have about a 3.5db loss per output, because the signal is halved plus a bit of additional loss. However, when combining the signals, the signal is NOT halved, so you don't have the 3db loss there. You only have about 0.5db loss (more or less, depending on the quality of the combiner and other factors). Let's take an example. Since a combiner is just a splitter turned around, we'll start with the splitter end. Let's feed 2mw to the input of the splitter. This means each output gets 1mw (3db loss) (we could use voltage also, but since power is E^2/R, it's not so straightforward). So now each leg has 1mw on it. Now let's turn the splitter around and make it a combiner and feed two signals, 1mw ea., same frequency, to the inputs to the combiner. Since this is a totally passive device, the effects are reversible. If the signals are 180 degrees out of phase, of course the output is 0. However, if the two signals are in phase with each other, the putout is 2mw. Note there is no 3db loss in the combiner. But of course this assumed a "perfect" combiner, with no losses. In reality, the combiner will have a bit of loss (typically 0.5db as noted above), so the output from the splitter will be slightly less than 1mw and the output from the combiner will be slightly less than 2mw. Does this help clarify things? And yes, phasing harnesses work the same way. The can be either splitters or combiners, depending on how they are used. The advantage is they have less loss; the disadvantage, as noted, is they have a much narrower effective bandwidth. -- ================== Remove the "x" from my email address Jerry, AI0K ================== |
|
#6
|
|||
|
|||
|
"Jerry Stuckle" wrote in message ... Jeff is correct. Your error is believing the combiner has 3.5db loss. When splitting a signal, you do have about a 3.5db loss per output, because the signal is halved plus a bit of additional loss. However, when combining the signals, the signal is NOT halved, so you don't have the 3db loss there. You only have about 0.5db loss (more or less, depending on the quality of the combiner and other factors). Let's take an example. Since a combiner is just a splitter turned around, we'll start with the splitter end. Let's feed 2mw to the input of the splitter. This means each output gets 1mw (3db loss) (we could use voltage also, but since power is E^2/R, it's not so straightforward). So now each leg has 1mw on it. Now let's turn the splitter around and make it a combiner and feed two signals, 1mw ea., same frequency, to the inputs to the combiner. Since this is a totally passive device, the effects are reversible. If the signals are 180 degrees out of phase, of course the output is 0. However, if the two signals are in phase with each other, the putout is 2mw. Note there is no 3db loss in the combiner. But of course this assumed a "perfect" combiner, with no losses. In reality, the combiner will have a bit of loss (typically 0.5db as noted above), so the output from the splitter will be slightly less than 1mw and the output from the combiner will be slightly less than 2mw. Does this help clarify things? And yes, phasing harnesses work the same way. The can be either splitters or combiners, depending on how they are used. The advantage is they have less loss; the disadvantage, as noted, is they have a much narrower effective bandwidth. What I am having trouble with is the 'perfect' combiner. The one by Wineguard specs 3.5 db loss and the MiniCircuits I have specs at 3 db plus slightly more depending on frequency. I had forgotten that I built one years ago out of the ARRL Handbook. They give it a spec of 6 db of loss per port. The one I built has that not counting minor errors and loss. Just checked it out. My problem is where are you going to find a combiner for a broad frequency that does not have any large (say over 1 db ) of loss ? Are the ones for the TV frequencies built differant ? For the splitters, I see the 3 db because the signal is going to two places (3 db equals half power as we all know). But then the problem I am having is the extra 3 db that is lossed in the combiner instead of just half of a db or so. Has anyone actually put one on accurate test equipment to see about the loss like I have been trying to do ? I understand phasing harnesses for antennas. They are almost loseless. Only a few feet of coax worth. I have used them on antennas before. They are not usually very broad banded unless the antennas are broad banded and made so the impedance is not the nominal 50 ohms. That is for comercial 4 or 8 dipole arays for VHF/UHF. Lots of 'tricks' used to do that. --- This email is free from viruses and malware because avast! Antivirus protection is active. http://www.avast.com |
|
#7
|
|||
|
|||
|
On 1/4/2014 9:23 PM, Ralph Mowery wrote:
"Jerry Stuckle" wrote in message ... Jeff is correct. Your error is believing the combiner has 3.5db loss. When splitting a signal, you do have about a 3.5db loss per output, because the signal is halved plus a bit of additional loss. However, when combining the signals, the signal is NOT halved, so you don't have the 3db loss there. You only have about 0.5db loss (more or less, depending on the quality of the combiner and other factors). Let's take an example. Since a combiner is just a splitter turned around, we'll start with the splitter end. Let's feed 2mw to the input of the splitter. This means each output gets 1mw (3db loss) (we could use voltage also, but since power is E^2/R, it's not so straightforward). So now each leg has 1mw on it. Now let's turn the splitter around and make it a combiner and feed two signals, 1mw ea., same frequency, to the inputs to the combiner. Since this is a totally passive device, the effects are reversible. If the signals are 180 degrees out of phase, of course the output is 0. However, if the two signals are in phase with each other, the putout is 2mw. Note there is no 3db loss in the combiner. But of course this assumed a "perfect" combiner, with no losses. In reality, the combiner will have a bit of loss (typically 0.5db as noted above), so the output from the splitter will be slightly less than 1mw and the output from the combiner will be slightly less than 2mw. Does this help clarify things? And yes, phasing harnesses work the same way. The can be either splitters or combiners, depending on how they are used. The advantage is they have less loss; the disadvantage, as noted, is they have a much narrower effective bandwidth. What I am having trouble with is the 'perfect' combiner. The one by Wineguard specs 3.5 db loss and the MiniCircuits I have specs at 3 db plus slightly more depending on frequency. I had forgotten that I built one years ago out of the ARRL Handbook. They give it a spec of 6 db of loss per port. The one I built has that not counting minor errors and loss. Just checked it out. A perfect combiner (like anything else "perfect") doesn't exist. But it is a very common (and handy) way of specifying how things work. It's used all over the place in EE degree programs, for instance. So you start with the perfect item, then add losses, phase shifts, etc. as they occur to get a "real" part. My problem is where are you going to find a combiner for a broad frequency that does not have any large (say over 1 db ) of loss ? Are the ones for the TV frequencies built differant ? There are good combiners and bad combiners. The commercial grade ones we use typically have 1db loss from 50Mhz to 2Ghz. Note that these are basically splitters which are reversed to form combiners, when necessary. For the splitters, I see the 3 db because the signal is going to two places (3 db equals half power as we all know). But then the problem I am having is the extra 3 db that is lossed in the combiner instead of just half of a db or so. In a good quality combiner, there is no extra 3db of loss. Has anyone actually put one on accurate test equipment to see about the loss like I have been trying to do ? I haven't actually measured it myself, but I do use commercial grade splitters/combiners (not as much any more because a lot of video has gone digital). Typical loss as a combiner is around 0.5 - 0.7 db from 50Mhz to 2Ghz. But you also won't find these at Radio Shack or Best Buy. And there are testing labs out there who do test these things; if any of the ratings were off, the manufacture would quickly lose credibility in commercial circles. I understand phasing harnesses for antennas. They are almost loseless. Only a few feet of coax worth. I have used them on antennas before. They are not usually very broad banded unless the antennas are broad banded and made so the impedance is not the nominal 50 ohms. That is for comercial 4 or 8 dipole arays for VHF/UHF. Lots of 'tricks' used to do that. Phasing harnesses are just another form of splitter/combiner. One way they combine; turn them around and they split. That's why they work for both transmitting and receiving. --- This email is free from viruses and malware because avast! Antivirus protection is active. http://www.avast.com -- ================== Remove the "x" from my email address Jerry, AI0K ================== |
|
#8
|
|||
|
|||
|
On Sat, 4 Jan 2014 21:23:14 -0500, "Ralph Mowery"
wrote: What I am having trouble with is the 'perfect' combiner. I feel your pain. Many years ago, I made a similar mistake on the NEC antenna modeling mailing list. I then processed to make a total fool of myself and had to be corrected by the experts. Even so, I still didn't believe it so I built a Wilkinson combiner and bench tested it for loss. I still have the combiner somewhere as a reminder of my mistake. Incidentally, a Wilkinson combiner might be a tolerable solution for combining two FM antenna. The loss is much less than a bifilar wound toroid. I'm not sure if it will work over the entire FM band. I can grind the numbers if anyone is interested. My problem is where are you going to find a combiner for a broad frequency that does not have any large (say over 1 db ) of loss ? Are the ones for the TV frequencies built differant ? There's only so much you can do with passive only designs. The next step up is an active combiner: http://www.rldrake.com/product-ac1686.php 0-3dB gain per port. 54 to 860 MHz. Has anyone actually put one on accurate test equipment to see about the loss like I have been trying to do ? Yep. I have. There's very little loss between the combiner input ports and the "sum" port. However, in the other direction, there's a bit over 3dB loss due to the power splitting. See the specs on the MCL splitter/combiner that you have and try it with a service monitor or generator. Since it works down to 10 MHz, you might be able to do the test with a function generator, a few dummy loads, some T connectors, and an oscilloscope. I understand phasing harnesses for antennas. They are almost loseless. Only a few feet of coax worth. I have used them on antennas before. They are not usually very broad banded unless the antennas are broad banded and made so the impedance is not the nominal 50 ohms. That is for comercial 4 or 8 dipole arays for VHF/UHF. Lots of 'tricks' used to do that. It's low, but the phasing harness loss for stacked vertical dipoles is not zero. I've never calculated or measured it, but this might help: http://www.kg4jjh.com/pdf/2-Meter%20Vertical%20Dipole%20Array.pdf "The phasing harness loss at 150 MHz is calculated to be 0.67 dB." Scaled for 100 Mhz, I would guess about 0.5 dB. Might as well use a combiner/splitter. -- Jeff Liebermann 150 Felker St #D http://www.LearnByDestroying.com Santa Cruz CA 95060 http://802.11junk.com Skype: JeffLiebermann AE6KS 831-336-2558 |
|
#9
|
|||
|
|||
|
On Sat, 4 Jan 2014 17:40:20 -0500, "Ralph Mowery"
wrote: I agree that stacking antennas works, the problem I have is the type of combiner that is used. Well, one could always use an active combiner. For just the FM band, that's quite easy. The 30% was from another web site and I assume it was from someone at the Winegard factory. Not sure why he would say 30% instead of db. This may help explain the problem: http://www.journalistunits.com It doesn't include most electronic units of measure, but I think you see the problem. Even so 30 % is nowhere near the 3.5 db listed in the ad. From the url you gave, the spec is for 3.5 db which is around what I would think it could be if simple resistors were used. Nope. A resistive combiner/splitter is -6dB. http://www.microwaves101.com/encyclopedia/resistive_splitters.cfm "Resistive power dividers are easy to understand, can be made very compact, and are naturally wideband, working down to zero frequency (DC). Their down side is that a two-way resistive splitter suffers 10xlog(1/2) or 3.0103 dB of real resistive loss, as opposed to a lossless splitter like a hybrid. Accounting for 3.0103 dB real loss and 3.0103 dB power split, the net power transfer loss you will observe from input to one of two outputs is 6.0206 dB for a two-way resistive splitter, so they are often called 6 dB splitters. Dig?" That combiner seems to be made not for stacking antennas for more gain, but to combine several antennas either pointed at differant directions or so a single feedline could be used for a TV and FM antenna or where you hae seperate antennas on the same mast for UHF and VHF. When one combines two different band antennas, the usual method is a diplexer. Since the receiver only sees one antenna on each band, the impedance is constant. A low pass filter can also be made very low loss if you don't care much about rolloff and ripple. However, if we're down to the point where small fractions of a dB produce a noticeable difference, I suspect that additional gain (tower mounted pre-amp) or less loss (better coax cable) will be more important. Something like this: http://www.solidsignal.com/pview.asp?p=uvsj 0.5 dB insertion loss. Oh well. As the specs is for a 3.5 db loss, I assume that is if you hook up two antennas to it, the antennas will have a gain of 3 db at the most, then you go to the combiner and loose 3.5 db for an overall loss of .5 db. Please re-read what I wrote. From each of the (input) ports to the receiver port (output), there is only 0.5dB of loss. If two antennas provide an additional 3dB of gain, and each port gobbles 0.5dB, then the combined gain is 2dB. That is where I don't see stacking two antennas and using that combiner for more signal strength. Would you rather make the yagi twice as long? Once we get to very large antennas, 3dB of additional gain can easily become a mechanical challenge. I do agree that to get 3 db of gain from the antenna it would need to be about twice as long. I did not look up to antenna to see that it was about 10 feet long already. A 20 foot long antenna would be large, but so would two antennas 10 feet long and seperated by around 5 feet. Note that FM broadcast stations with directional antennas use various vertically mounted antennas, not Yagis. They're interested in survivability as well as gain and pattern. A 20ft long antenna is possible, but I don't think anyone wants to climb the tower and drop the antenna to fix a broken element. That's much easier with a side mounted barbeque grill type antenna, stacked dipoles, crossed dipoles, horizontal loops, etc. Maybe not too bad as I have several antennas on booms that are close to 15 feet long stacked about 5 feet apart. Not the best, but it was what I could do for what I had to work with. You can see them on my QRZ.com page under KU4PT. You probably don't have overweight birds sitting on your yagi elements. Yes, it can be made to work but it's so much easier and neater to do it with a combiner. -- Jeff Liebermann 150 Felker St #D http://www.LearnByDestroying.com Santa Cruz CA 95060 http://802.11junk.com Skype: JeffLiebermann AE6KS 831-336-2558 |
|
#10
|
|||
|
|||
|
In message , Ralph
Mowery writes wrote in message ... Dear John, Stacking 2 HD6065P antennas in the same direction for gain you would mount them 72" apart vertically from boom to boom. The phasing line will be 52" long each +/- 1/8" of each other in length. The phasing lines will feed a CC-7870 coupler to combine the signals. Your single output is now you signal. Cordially, Hans Rabong Tech. Service Manager. Winegard Company Unless I am missing something, seems like a waste of antenna and money. I looked for the coupler and found this: "You have the CC-7870 hooked up properly. However this coupler is just like a 2-way splitter hooked up in reverse; in that it will reduce the signal from each antenna by about 30%. " If it is just a 2 way splitter in reverse, there is usually a 3 db loss and all you get with 2 antennas is a gain of 3 db, so you gain nothing over a single antenna with this coupler. To get close to 3 db of gain you need to have a combiner of near zero loss. This is often done by using an odd number of wavelenghts of feedline of a differant impedance and hooking them in parallel to keep the impedance the same. I doubt it would work very well over the while FM band,but may for a small portion of it. I don't know how big the antenna is, but you would be beter off with a single larger antenna, or possiably an amplifier. Maybe an even beter feedline. Strange as it may seem, if you use (for example) a TV 2-way '3dB' splitter to combine two identical in-phase signals, you DON'T lose 3dB. Apart from the unavoidable slight inherent losses of the two transformers the circuit uses (a total of around 0.5dB at low VHF, increasing to 1dB at high UHF), the splitter is lossless. Ignoring the transformer loss, the 3dB loss occurs simply because the power at each output port is half of that at the input. You haven't actually lost anything. If the splitter is now turned around to become a combiner, it doesn't suddenly become more lossy. If you again ignore the transformer losses, the two identical in-phase signals you feed into the 'output' ports are added, and the result is a signal 3dB higher. An interesting experiment would be to cascade two splitters - the first used as a splitter, and the second used to combine the two split signals (via identical lengths of coax). The loss (because of the transformers) should be only 1dB (low VHF) to around 2dB (high UHF), and not 7 to 8dB. -- Ian |
| Reply |
|
| Thread Tools | Search this Thread |
| Display Modes | |
|
|
Similar Threads
|
||||
| Thread | Forum | |||
| Stacking Satellite VHF and UHF F9FT Antennas | Antenna | |||
| Stacking Big Wheel Antennas ? | Antenna | |||
| Stacking Big Wheel Antennas??? | Homebrew | |||
| Stacking Antennas | Antenna | |||
| Stacking antennas | Antenna | |||