Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On 7/4/2015 7:22 PM, Jeff Liebermann wrote:
On Sat, 04 Jul 2015 19:04:01 -0400, Jerry Stuckle wrote: Think of it this way, without the math. On the transmitter side of the network, the match is 1:1, with nothing reflected back to the transmitter. So you have a signal coming back from the antenna. You have a perfect matching network, which means nothing is lost in the network. The feedline is perfect, so there is no loss in it. The only place for the signal to go is back to the antenna. Wikipedia says that if the source is matched to the line, any reflections that come back are absorbed, not reflected back to the antenna: https://en.wikipedia.org/wiki/Impedance_matching "If the source impedance matches the line, reflections from the load end will be absorbed at the source end. If the transmission line is not matched at both ends reflections from the load will be re-reflected at the source and re-re-reflected at the load end ad infinitum, losing energy on each transit of the transmission line." And you believe everything Wikipedia says? ROFLMAO. But that also explains your ignorance. -- ================== Remove the "x" from my email address Jerry Stuckle ================== |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Vertical Antenna Performance Question | Antenna | |||
Antenna Question: Vertical Whip Vs. Type X | Scanner | |||
Question about 20-meter monoband vertical (kinda long - antenna gurus welcome) | Antenna | |||
Technical Vertical Antenna Question | Shortwave | |||
Short STACKED Vertical {Tri-Band} BroomStick Antenna [Was: Wire ant question] | Shortwave |